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Doppler cooling of three-level � systems by coherent pulse trains
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We explore the possibility of decelerating and Doppler cooling an ensemble of three-level �-type atoms by
a coherent train of short, nonoverlapping laser pulses. We show that � atoms can be Doppler cooled without
additional repumping of the population from the intermediate ground state. We derive an analytical expression
for the scattering force in the quasi-steady-state regime and analyze its dependence on pulse-train parameters.
Based on this analysis we propose a method of choosing pulse-train parameters to optimize the cooling process.
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I. INTRODUCTION

Doppler cooling [1] relies on the radiative force originating
from momentum transfer to atoms from a laser field and sub-
sequent spontaneous emission in random directions. Cooling
by cw lasers has been widely studied both theoretically and
experimentally within the past several decades [2–4]. Schemes
for cooling two-level atoms via trains of ultrashort laser pulses
[5–9] were proposed. The possibility of stimulated cooling of
the two-level atoms by pairs of counterpropagating π pulses
[10–13] and the similar idea of cooling via bichromatic stand-
ing wave [13] were studied both theoretically and experimen-
tally. The interest in cooling via pulse trains is stimulated by the
rapid development of a pulsed laser technology and frequency
combs (FCs) [14–16]. In particular the mechanical action of
FCs on atoms was observed experimentally in Ref. [17].

In many cases the atom cannot be approximated as a
two-level system because the excited state may decay to some
intermediate sublevels. As an example, group III atoms have no
single-frequency closed transition on which the cooling of the
ground state could be based, because their ground states are
composed of two fine-structure sublevels, nP1/2 and nP3/2.
Continuous-wave laser cooling of this type of � system in
the presence of bichromatic force-assisted velocity-selective
coherent population trapping was studied in Ref. [18]. Other
schemes of cw sub-Doppler cooling of three-level atoms
based on velocity-selective coherent population trapping were
proposed earlier [19,20]. There were also proposals for
bichromatic force cooling of three-level � atoms [21,22].

Here we propose a scheme for decelerating and cooling the
three-level atoms with the ultrafast pulse train. In our scheme
both ground states of the �-type system are coupled to the
excited state by the same laser field. As a result, the cooling
does not require additional repumping of a population from
the intermediate state. The exerted scattering force depends on
the atomic velocity via the Doppler shift. Similar to the case
of a two-level system studied in Ref. [9], the spectral profile
of the scattering force mimics the periodic structure of the FC
spectra. Since the positions of FC teeth depend on the pulse-
to-pulse carrier envelope phase offset (CEPO), the velocity
dependence of the scattering force can be varied in time by
simply changing the phase offset between subsequent pulses.
Thereby, continuous compression of the velocity distribution
in velocity space can be achieved. During the pulse-train
cooling, continuous velocity distributions gravitate toward a
series of sharp peaks (typically of the Doppler width) in

the velocity space, reflecting the underlying frequency-comb
structure.

There are several motivations for this work. Wide spectral
coverage of FCs allows one to cool the atoms in a broad range
of velocities at the same time. In some cases, FC cooling
could be used to reduce the number of required lasers. A
cooling setup based on tunable FCs can be an alternative to
Zeeman slowers, whose fields may be detrimental for precision
measurements [23]. The presented analysis is applicable for
laser cooling in ion storage rings [24,25] where the circulating
ions are subjected to a chopped laser field.

We start by deriving an analytical expression for the scatter-
ing force in the quasi-steady-state (QSS) regime, based on the
expression for the density matrix obtained in our previous
work [26]. In the quasi-steady-state regime the radiative-
decay-induced drop in the excited-state population between
two pulses is fully restored by the second pulse. This regime
is similar to the saturation regime in a classical system of two
kicked coupled damped oscillators. Based on our analytical
expressions, we show that the � system can be Doppler
cooled without additional repumping of the population from
the intermediate ground state. We analyze the dependence
of the scattering force on the FC parameters. Based on this
analysis we propose a principle of choosing FC parameters for
optimal cooling of an ensemble of �-type three-level atoms.

For the pulse-train-driven � system there are two major
qualitative effects: “memory” and “pathway-interference”
effects. Both effects play an important role in understanding
the radiative force exerted by the pulse train on the multilevel
system. The system retains the memory of the preceding
pulse as long as the population of the excited state does
not completely decay between subsequent pulses. This is
satisfied for finite values of the product γ T , γ being the
excited-state radiative decay rate and T being the pulse
repetition period. Then the quantum-mechanical amplitudes
driven by successive pulses interfere and the response of the
system reflects the underlying frequency-comb structure of
the pulse train. If we fix the atomic lifetime and increase the
period between the pulses, the interference pattern is expected
to “wash out,” with a complete loss of memory in the limit
γ T � 1. This memory effect is qualitatively identical to the
case of the two-level system explored in Ref. [9].

The pathway-interference effect is unique for multilevel
systems. The excited-state amplitude arises from simultaneous
excitations of the two ground states. The two excitation
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pathways interfere. The pathway-interference effect is perhaps
most dramatic in the coherent population trapping (CPT)
regime [27–30] where the “dark” superposition of the ground
states conspires to interfere destructively so that there is no
population transfer to the excited state at all.

This paper is organized as follows. In Sec. II we derive an
analytical expression for the scattering force exerted on atoms
by the pulse train in the quasi-steady state regime, study its
dependence of the FC parameters and propose the method for
their optimization. In Sec. III we study the process of cooling
the thermal beam of three-level λ-type atoms by the pulse train.
We demonstrate that in the optimal cooling regime the initial
velocity distribution evolves to a comblike profile with sharp
equidistant maxima, the “velocity comb.” The width of each
peak is determined by the Doppler temperature limit. Finally,
the conclusions are drawn in Sec. IV.

II. ANALYTICAL EXPRESSION FOR A SCATTERING
FORCE EXERTED ON ATOMS BY δ-FUNCTION

PULSE TRAIN

A. δ-function-like pulse model

As in our previous work [26] we parametrize the electric
field of the pulse train at a fixed spatial coordinate as

E(t) = ε̂ Ep

∑
m

cos(ωct + �m) g(t − mT ) , (1)

where ε̂ is the polarization vector, Ep is the field amplitude,
and �m is the phase shift. The frequency ωc is the carrier
frequency of the laser field and g(t) is the shape of the pulses.
We normalize g(t) so that max |g(t)| ≡ 1; then Ep has the
meaning of the peak amplitude. While typically pulses have
identical shapes and �m = mφ, one may want to install an
active optical element at the output of the cavity that could
vary the phase and the shape of the pulses.

The � system, Fig. 1, is composed of the excited state |e〉
and the ground states |g1〉, |g2〉 separated by 
12; the transition
frequencies between the excited and each of the ground
states are ωeg1 , ωeg2 , correspondingly. The single-pulse area
corresponding to a transition |gj 〉 → |e〉 is

θj = �
peak
j

∫ ∞

−∞
g(t)dt , (2)

FIG. 1. (Color online) Energy levels of �-type system and
positions of frequency-comb teeth. The comb is Doppler shifted in
the atomic frame moving with velocity v.

where �
peak
j = Ep

h̄
〈e|D · ε̂|gj 〉 is the peak Rabi frequency

expressed in terms of the dipole matrix element. As long as
the duration of the pulse τp is much shorter than the repetition
time, the atomic system behaves as if it was a subject to a
perturbation by a series of δ-function-like pulses: �peak

j g(t) →
θj δ(t). In this limit, the only relevant parameter affecting
the quantum-mechanical time evolution is the effective area
of the pulse. The optical Bloch equations, in rotating-wave
approximation, may be written in the form

ρ̇ee =−γρee−
N−1∑
n=0

δ(t − nT )
2∑

j=1

θj Im
[
e−i(kcz(t)−δj t−�n)ρegj

]
,

(3)

ρ̇egj
= −γ

2
ρegj

+ i

2

N−1∑
n=0

δ(t − nT )

×
2∑

p=1

θpei(kcz(t)−δpt−�n)(ρeeδjp − ρgpgj
), (4)

ρ̇gj gj ′ = δjj ′γjρee + i

2

N−1∑
n=0

δ(t − nT )
[
θj ′ei(kcz(t)−δj ′ t−�n)ρgj e

− θj e
−i(kcz(t)−δj t−�n)ρegj ′

]
, (5)

where the detunings δj = ωc − ωegj
are the detunings of the

carrier frequency from the frequencies of transitions |gj 〉 →
|e〉.

The dynamics of a three-level �-type system driven by
the coherent train of δ-function-like pulses has been studied in
detail in our previous work [26]. Here we employ an analytical
expression for the density matrix in a quasi-steady-state regime
from that work. Although a general expression for the density
matrix was presented there, here we restrict ourselves to the
case most commonly realized. If the energy gap between
the two ground states is much smaller than the frequency
of transition from the ground state to the excited state, then
the ratio of decay rates, γ1/γ2, is proportional to the ratio of
relevant dipole matrix elements in the same way as the ratio
of pulse areas, θ1/θ2. In this case we can use the following
parametrization: θ1/θ2 = γ1/γ2 = tan χ . Then the postpulse
excited-state population (ρs

ee)r in the QSS regime reads

(
ρs

ee

)
r

= 8e
γT

2 sin2 �

2
sin2 πκ/D

D = 8 cos 2χ

(
4 sin4 �

4
+ sin2 �

2
cos 2πκ

)
× sin πκ sin(η̄ + πκ)

+ cos πκ cos(η̄ + πκ)

(
4 cos

�

2
(cos 2πκ − 5)

+(cos � + 3)(3 cos 2πκ + 1)

−16 sin4 �

4
sin2 πκ cos(4χ )

)
− 4 cosh

(
γ T

2

)

×
(

4 cos2 �

4
cos 2πκ + 2 cos

�

2
− cos � − 5

)
.

(6)
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In this formula and below we employ the following notation
(see also Fig. 1):

(i) The effective single-pulse area is

� =
√

θ2
1 + θ2

2 , (7)

where θj are the single-pulse areas for the two transitions
|gj 〉 → |e〉, j = 1,2.

(ii) The number of teeth fitting in the energy gap h̄
12

between the two ground states is

κ = 
12/ωrep. (8)

Notice that κ generally is not an integer number. When it is
integer, the two-photon resonance condition is satisfied and
the system evolves into the dark state.

(iii) The Doppler-shifted phase offset between subsequent
pulses is given by

η = η(t) − η(t + T ) = (kcv + δ1)T + φ. (9)

Here v is the atomic velocity and φ is the carrier-envelope
phase offset between subsequent pulses; i.e., φ = �m+1 − �m

in Eq. (1). These phase parameters are used to characterize the
spectral profile of the scattering force. As shown below the
density matrix of a system and the scattering force are periodic
functions of η.

(iv) The residual detunings δj , j = 1,2, are between |gj 〉
levels and the nearest FC modes in the reference frame moving
with the atom. In general, δ̄1 = (η̄ + 2πn1)/T and δ2 = (η̄ +
2πκ + 2πn2)/T , where integers nj are chosen to renormalize
the residual detunings to the interval −ωrep/2 < δj < ωrep/2.

Equation (6) gives the value of the excited-state population
just after the pulse. The time evolution between the pulses is
described by [mT < t < (m + 1)T )]

ρs
ee(t) = (

ρs
ee

)
r
e−γ (t-mT ). (10)

The dependence on the phase offset η̄ is the result of
interference between the elementary responses of a system
to subsequent pulses (the persistent “memory” of the system).
In particular, when γ T → ∞, the excited state completely
decays between the pulses and the interference factor vanishes
(the memory is erased):

(
ρs

ee

)
r
→ 4 sin2(πκ)

tan2 �
4 + sin2(πκ)

sin2 �
4

. (11)

At equal pulse areas θ1 = θ2 and decay rates γ1 = γ2 (χ =
π/4), Eq. (6) can be simplified further:

(
ρs

ee

)
r

= e
γT

2 sin2(πκ) sin2 �
2

4D′ ,

D′ =
{

cos(πκ) cos(η̄+πκ)

[
cos2(πκ)

× cos4

(
�

4

)
− cos

�

2

]
+ cosh

(
γ T

2

)
[

sin4

(
�

4

)
+ cos2

(
�

4

)
sin2(πκ)

]}
. (12)

B. Scattering force

Now we focus on the evaluation of the cooling force,

Fz = h̄kc

2∑
j=1

Im
[
ρegj

�egj

]
. (13)

�egj
= �

peak
j

∑N−1
m=0 g(t + z

c
− mT )e−i(kcz(t)−δj t−�m). The

laser field is present only during the pulse, so effectively we
deal with a sum over instantaneous forces,

F(t) = pr

∑
m,j

θj δ(t − mT ) Im
[
e−(kz−δjt−�m)ρegj

(t)
]
k̂c,

(14)

where k̂c is the unit vector along the direction of the pulse
propagation. The change in the linear momentum of a particle
due to the mth pulse is 
pm = limε→0+

∫ mT +ε

mT −ε
F(t)dt . We find

−
pm

pr

= [(
ρm

ee

)
r
− (

ρm
ee

)
l

]
k̂c, (15)

where (ρm
ee)r = ρee(mT + ε), (ρm

ee)l = ρee(mT − ε) (τ 	
ε 	 T ) are the excited-state population values just before and
just after the pulse.

This result follows from noticing that 
pm is
an integral of a particular combination

∑
j δ(t −

mT )θj Im[e−(kz−δjt−�m)ρegj
(t)] over time. This combination

enters the right-hand side of Eq. (3). Then by integrating
Eq. (14) over time we immediately arrive at Eq. (15).

Several insights may be gained from analyzing Eq. (15):
(i) Equation (15) simply states that the single laser pulse

fractional momentum kick averaged over a big number of
cycles is equal to a difference of populations before and after
the pulse.

(ii) As elucidated earlier for cw laser cooling (see, e.g.,
Ref. [3]), radiative decay plays a crucial role in maintaining
the force directed along the laser beam. In the context of
pulse-train cooling, Eq. (15), radiative decay brings down
the excited-state population in the time interval between
the pulses, thus keeping the pre- and postpulse excited-state
population difference negative; this leads to a net force along
the direction of the pulse-train propagation.

(iii) In the regime when two FC modes match both transition
frequencies between the excited and ground states, the system
evolves into a “dark” superposition of two ground states which
is transparent to the pulses. The population of the excited state
in this case and consequently the scattering force are both zero.

In the quasi-steady-state regime the value of the single-
pulse fractional momentum kick is

−
ps

pr

= (
ρs

ee

)
r
(1 − e−γ T ) (16)

and the average scattering force can be represented as

Fsc = 
ps

T
. (17)

In a particular case of equal branching ratios b1 = b2 =
1/2, the expression for the scattering force reads [this was
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FIG. 2. (Color online) The dependence of the fractional mo-
mentum kick 
p/pr on the phase offset η̄ at different values of
pulse repetition period T . Solid purple line, T = 4 ns; dashed purple
line, T = 50 ns. The parameters of the system are: γ = 0.05 GHz,
� = π/4, κ = 0.12.

obtained using Eq. (12)]

Fsc = 
p

T
= −h̄kc

T

sinh γ T

2 sin2
(

�
2

)
sin2(πκ)

2D′ , (18)

In Fig. 2 we plot the fractional momentum kick 
p/pr

as a function of the phase offset η̄. The radiative force
(fractional momentum kick) exerted by the train of coherent
pulses depends on the atomic velocity via Doppler shift η̄ =
(kv + δ1)T + φ. As velocity is varied across the ensemble,
the maxima of the force would occur at discrete values of
velocities:

vn = [π (2n − κ) − φ]/(kcT ),

n = . . . ,−2,−1,0,1,2, . . . . (19)

In other words, the fractional momentum kick (scattering
force) spectral profile exhibits the periodic structure of the
comb (see Fig. 2). As an example, for T = 5 ns and λc =
600 nm carrier wavelength, the force peaks are separated
by vn+1 − vn = 2π/(kcT ) = λc/T = 120 m/s in the velocity

space. Depending on the temperature of the ensemble, the
comb may have several teeth effectively interacting with the
ensemble. Notice, however, that if γ T � 1 (Fig. 2, dashed
purple line), the tooth structure of the radiative force washes
out and the atoms experience radiative force even if their
velocities are far away from peaks. In this case the power
stored in the pulse is delivered to the entire ensemble. This is
in contrast with the highly velocity-selective cw laser, where
the interaction window in the velocity space is typically 1 m/s.

C. Maximum momentum kick

The scattering force, Eq. (17), is linearly proportional to the
postpulse excited-state population. Therefore, the discussion
of the excited-state population dependence on FC parameters
in Ref. [26] directly applies to the scattering force too. In
Ref. [26] we found that the maximum of (ρs

ee)r and cor-
respondingly the maximum of the fractional momentum
kick for the case of equal pulse areas θ1 = θ2 and de-
cay rates γ1 = γ2 is reached at optimal residual detun-
ings δ̄1= − δ̄2 = − mod (2πκopt,2π )/T , if mod (2πκopt,

2π )/T < π and δ̄1 = −δ̄2 = 2π − mod (2πκopt,2π )/T, if
mod (2πκopt,2π )/T > π with optimal parameter κ = κopt

determined by

κopt = 1

π
arccos(x), (20)

where x is a root of the following algebraic equation:

16x4 cos4 �

4
− 32x cosh

γ T

2
sin4 �

4
+ 16 cos

�

2

−2x2

(
4 cos

�

2
+ 3 cos(�) + 9

)
= 0. (21)

One can show that for the general case of nonequal decay
rates, γ1 
= γ2, and pulse areas θ1

θ2
= γ1

γ2
= tan χ 
= 1 and fixed

value of parameter κ , the optimal residual detunings are
determined as

δ̄1 =
{

mod(η̄opt,2π )/T , |mod(η̄opt,2π )| < π

[mod(η̄opt,2π ) ∓ 2π ]/T , |mod(η̄opt,2π )| > π
, (22)

δ̄2 =
{

mod(η̄opt + 2πκ,2π )/T , |mod(η̄opt + 2πκ,2π )| < π

[mod(η̄opt + 2πκ,2π ) ∓ 2π ]/T , |mod(η̄opt + 2πκ,2π )| > π
. (23)

Here the sign ∓ in the expression for the δ̄1 (δ̄2) corresponds to the sign of the −η̄opt (−(η̄opt + 2πκ)),

η̄opt = − arctan
B

A
− πκ + 2πn,

A = cos πκ

(
4 cos

�

2
(cos 2πκ − 5) + (cos � + 3)(3 cos 2πκ + 1) − 16 sin4 �

4
sin2 πκ cos(4χ )

)
(24)

B = 8 cos 2χ

(
4 sin4 �

4
+ sin2 �

2
cos 2πκ

)
sin πκ.

At χ = π/4 the coefficient B in Eq. (24) vanishes and η̄opt = −πκ + 2πn, n = 0,1, . . .. After substituting Eq. (24) into the
equation for the density matrix, Eq. (6), one can find the optimal value of the parameter κopt corresponding to the maximum of
the postpulse excited-state population and consequently the maximum fractional momentum kick.
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FIG. 3. (Color online) The dependencies of the quasi-steady-state values of the postpulse excited-state population (ρs
ee)r and single-pulse

momentum kick 
p/pr on effective single-pulse area � at different values of μ = γ T : μ = 10 (short-dashed pink line), μ = 1/2 (long-dashed
blue line), μ = 1/100 (solid purple line), and optimal parameters η̄ = −πκopt, where κopt is obtained from Eq. (20).

The value of the single pulse area �, maximizing the value
of the fractional momentum kick, is equal to π + 2πn, n =
0,1, . . .. In Figs. 3(a) and 3(b) we show the dependencies of
the QSS values of the excited-state population (ρs

ee)r (at θ1 =
θ2, γ1 = γ2) and corresponding single-pulse momentum kick

p/pr on the effective single-pulse area �. Different curves
correspond to different values of the parameter μ = γ T . The
values of (ρs

ee)r and 
p/pr were calculated at the optimal
value of κ , determined by Eq. (21) for each � and μ = γ T .

At � = π the optimal value of the parameter κ is equal to
1/2, independently of the ratio of individual pulse areas θ1/θ2,

κ
opt
�=π = 1

2 . (25)

For κ = 1/2 and � = π the excited-state population and the
fractional momentum kick are

(
ρs

ee

)
r

(
� = π,κ = 1

2

)
= 1

3
eγT/2/ cosh(γ T /2),

(26)


p/(pr )�=π,κ=1/2 = 2

3
tanh

(
γ T

2

)
. (27)

The spectral resolution of the scattering force at κ = κopt

vanishes as � → π .
As it was shown in Ref. [26], the maximum postpulse

excited-state population in a three-level � system (with
b1 = b2 = 1/2, θ1 = θ2 = π/

√
2) is reached at γ T � 1 and

is equal to 2/3. Consequently the maximum of the fractional
momentum kick is also 2/3.

This result can be generalized to the case of unequal pulse
areas θ1 
= θ2 and branching ratios γ1 
= γ2 (in the case of θ1 
=
πn, n = 0,1). Here at � = π and κ = 1/2, the three-level �

system, which is initially in the ground state |g1〉, eventually
reaches the QSS with the fractional momentum kick expressed
as

(ρs
ee)r = 
pmax

pr

= − 2 sin2(2χ )

(b2 − b1) cos(2χ ) + cos(4χ ) − 2
.

(28)

If the decay rates and pulse areas are γ1 = γ sin2 χ = θ2
1

�2 , γ2 =
γ cos2 χ = θ2

2
�2 , θ1 = � sin2 χ , θ2 = � cos2 χ , the maximum

fractional momentum kick (28) is equal to 2/3. This limit is
independent of the value of χ (θ1 
= πn requires χ 
= πn/2).

D. Friction coefficient

In general, one would be interested in both slowing down
the atomic beam and compressing (i.e., cooling) the velocity
distribution. Cooling would occur if there is a negative velocity
gradient of the radiative force Fsc. One may introduce a friction
coefficient β by expanding the force about some velocity v,
corresponding to a certain value of parameter η̄(v),

Fsc(v + 
v) ≈ Fsc(v) − β(v)
v . (29)

When the friction coefficient is positive (β > 0), one observes
the compression of velocity distribution around v. Negative
values of β lead to heating of the ensemble. In the limiting
case when the radiative lifetime is much shorter than the pulse-
repetition period there is no interference between the action of
subsequent pulses on a system and consequently no velocity
dependence of the scattering force. The friction coefficient is
thereby β = 0 and, while the ensemble slows down, there is
no compression of the velocity distribution.

The friction coefficient of Eq. (29) may be directly deter-
mined from the analytical expression for the force, Eq. (17),

β = −16h̄k2
c sinh

γ T

2
sin2

(
�

2

)
sin2(πκ)

× B cos(η̄ + πκ) − A sin(η̄ + πκ)

[A cos(η̄ + πκ) + B sin(η̄ + πκ) + C]2
,

C = 8 cosh
γ T

2

{[
cos

(
�

2

)
+1

]
[1− cos(2πκ)]

+
[

1− cos

(
�

2

)]2}
, (30)

where coefficients A, B are defined in Eq. (24).
For the case of equal decay rates and pulse areas (χ = π/4),

one has

β(χ = π/4) = h̄k2
c

2D′2 sinh
γ T

2
sin2 �

2
sin2(πκ) cos(πκ)

×sin(η̄+πκ)

(
cos4 �

4
cos2(πκ)− cos

�

2

)
.

(31)
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(a)

(b)

T=1/2

T=1/100

Π Π Π

Η kcv 1 T

Β
k c2

Π Π Π

Η kcv 1 T Φ

Β
k c2

FIG. 4. (Color online) Dependence of the friction coefficient
β/h̄k2

c on phase detuning η̄ at (a) γ T = 1/2 and (b) γ T = 1/100.
Each panel has three curves with different values of pulse area �:
� = π/10 (solid purple line), � = π/2 (thick dashed purple line),
and � = π (thin dashed pink line).

This result depends on the effective pulse area, �, the product
μ = γ T , and κ = 
12/ωrep.

In Figs. 4(a) and 4(b) we plot the dependence of the friction
coefficient β (at θ1 = θ2) from Eq. (31) on the phase offset η̄ at
different values of γ T and � at κ = κopt, optimally chosen for
each pair of parameters γ T and �. It acquires the maximum
value at η̄ = η̄β ,

η̄β = − cos−1

(
b − √

8a2 + b2

2a

)
− πκ, (32)

where

a = cos(πκ)

[
cos4

(
�

4

)
cos2(πκ) − cos

(
�

2

)]
, (33)

b = cosh

(
μ

2

)[
cos2

(
�

4

)
sin2(πκ) + sin4

(
�

4

)]
. (34)

For the case of nonequal pulse areas (χ 
= π/4),

η̄β = − sec−1

(
A2+B2

A(C − D) + √
2B

√
CD−2(A2+B2) − C2

)
,

D =
√

8(A2 + B2) + C2, (35)

where A, B, and C are defined in Eqs. (24) and (30).
One can see (Fig. 4) that as the pulse repetition rate grows

(smaller γ T ), smaller values of single-pulse area � lead to
larger values of the friction coefficient β. Notice, however,
that at very small values of γ T 	 1 the momentum kick per
pulse becomes smaller and the number of pulses needed to
decelerate the atomic beam is increased.

At very large values of γ T � 1, while the friction
coefficient β vanishes, the momentum kick 
p reaches its
maximum. If the large value of γ T � 1 is due to the low
pulse repetition rate, then the scattering force Fsc = 
p/T

also becomes smaller and the overall cooling time is increased.
For π pulse and θ1 = θ2 (χ = π/4), Eq. (32) reduces to

βπ = h̄k2
c

2

sinh γ T

2 sin2 πκ cos3 πκ sin(η̄ + πκ)

(cos3 πκ cos(η̄ + πκ) − (cos 2πκ − 2) cosh γ T

2 )2

(36)

At κ = 1
2 (chosen in order to maximize the scattering force)

the friction coefficient βπ vanishes (similar to the case when
γ T � 1). One can show that the friction coefficient at κ =
1/2 and � = π turns to zero for an arbitrary finite ratio of
individual pulse areas θ1/θ2 and decay rates γ1/γ2.

E. Finding the optimal cooling regime

Before discussing criteria for the optimal choice of FC
parameters (single-pulse area and pulse repetition rate) we
analyze the dependence of the scattering-force profile on
parameters γ T and � at an optimally chosen number of teeth,
κ , fitting into the energy gap between the two ground states.
It is worth noticing that the optimal value of κopt is defined
with an accuracy up to an integer number; that is, the values
κopt + n, n = 0,1, . . ., where κopt is defined from Eq. (20),
are also optimal. The analysis in this section is carried out
assuming equal individual pulse areas θ1 = θ2 and branching
ratios b1 = b2 (χ = π/4).

In Fig. 5 we study the dependence of the scattering force
Fsc on the phase offset parameter η̄ at optimally chosen κ ,
Eq. (20), as the single-pulse area � and the parameter μ vary.
One can see that at small μ = γ T in Fig. 5 the maxima of
the scattering force are nearly independent of the pulse area
� as long as � > μ. However, as � is increased the friction
coefficient becomes smaller. As an example, at γ T = 1/100
the amplitudes of the scattering force corresponding to � =
π/10 and � = π/2 are the same, but the width of the peaks is
smaller at � = π/10.

At higher values of the parameter μ the scattering force
saturates at higher values of the pulse area �. But the gradient
of the scattering force is decreased. At very small pulse areas
� → 0 the scattering force vanishes (as well as the momentum
kick 
p) regardless of the parameter γ T .

To summarize, at lower pulse repetition rates γ T � 1 and
larger values of pulse area, one can obtain larger momentum
kick and smaller scattering force and compression rate. At
larger pulse repetition rate (γ T 	 1) and properly chosen �

one can obtain the maximum of the compression rate, but a
smaller momentum kick. In the first case the cooling time
is increased and the compression of the velocity distribution
is slow. In the second case the number of pulses needed
to decelerate the beam is increased and the scattering force
velocity capture range is decreased.

To find the optimal cooling regime one has to compromise
between the fast slowing of the entire ensemble and its velocity
distribution compression rate. In the case when the scattering
force rapidly vanishes in the vicinity of its maxima only the
atoms within narrow groups of velocity are decelerated. Below
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FIG. 5. (Color online) The dependence of the scattering force on
the Doppler-shifted phase offset η̄ at the optimal value of κ = κopt,
chosen according to Eq. (21) at fixed value of μ = γ T : (a) μ = 1/2,
(b) μ = 1/100 and different values of effective single pulse area �.
Different curves correspond to the distinct values of single pulse
areas: � = π

10 (solid purple line), � = π

2 (long-dashed blue line),
� = π (short-dashed pink line).

we show that this problem can be mitigated. The spectral
dependence of the scattering force can be varied in time so that
the positions of the maxima follow the center of the velocity
distribution of the decelerating ensemble. In this case those
atoms, which initially were outside of the scattering force
velocity capture range and not decelerated, will be eventually
captured by the force profile being moved in the spectral
domain (e.g., by changing the CEPO φ).

However, if the initial atomic beam is too fast and (or) the
velocity distribution is too wide, one can be interested initially
in slowing down the ensemble so that the cooling distance
will be not too large. In this case one would prefer to have
a broad scattering force profile (wide velocity capture range).
The amplitude of the scattering force has to be large enough
to mitigate the increase of cooling time and consequently the
cooling distance. This can be realized at larger pulse areas
�. For example, at μ ∼ 1/2, � ∼ π/2 for the atoms with the
excited-state lifetime τ ∼ 15 ns at the laser field wavelength
λ = 589 nm, the velocity capture range 
vcptr is estimated by

vcptr ∼ 20 m/s. The scattering force amplitude is quite the
same as its maximum value, reached at � = π .

At � = π the velocity capture range can be extended up
to λ/τp, where τp is the duration of the pulse. For τp ∼ 1 ps
and λ = 589 nm the maximum velocity capture range is very
broad: 
vmax

cptr ∼ 5.89 × 105 m/s.
If the initial velocity distribution is already narrow and (or)

the central velocity value is not too high, priority can be given
to the fast velocity distribution compression. The optimal set
values of pulse area and pulse repetition rate can be chosen
based on the initial velocity distribution, the desired velocity

compression rate, and the limiting factors such as given cooling
length and the laser power.

III. EVOLUTION OF THE VELOCITY DISTRIBUTION

Now we turn to the dynamics of slowing down and cooling
an entire atomic ensemble, characterized by some velocity
distribution f (v,t) (time dependence is caused by radiative
force).

A. No-cooling theorem for fixed FC parameters

Suppose that the positions of FC teeth remain fixed in the
frequency domain during the deceleration. As the atoms slow
down, they come in and out of resonance with different FC
teeth. The gradient of the scattering force changes its sign (see
Fig. 4) as the Doppler-shifted phase (velocity) varies. As a
result sustained cooling cannot be realized if the positions of
FC teeth remain fixed in frequency space during deceleration.
This can be demonstrated as follows. Suppose the parameters
of the frequency comb remain fixed. As a result of scattering
N pulses the atom with initial velocity vi will be decelerated
to the final velocity vf determined from the implicit equation

Nvr = 2csc2 �
2 csc2 πκ

kcT sinh γ T

2

{
kcT (vf − vi) cosh

γ T

2

×
(

cos4 �

4
sin2 πκ + sin4 �

4

)

+ cos πκ

(
cos4 �

4
cos2 πκ − cos

�

2

)

× [sin(kcT vf + πκ) − sin(kcT vi + πκ)]

}
, (37)

where vr ≡ pr/M is the recoil velocity. This equation was
obtained by integrating Eq. (18).

Equation (37) implies that the decrement in velocities would
vary across the ensemble. Yet if we fix the change of velocity
equal to the spacing between the teeth, vf = vi − λc/T , we
find that the required number of pulses, N0 (or time N0T ),

N0 = 2 csc2 �
2 csc2 πκ

T vr sinh γ T

2

× cosh
γ T

2

(
cos4 �

4
sin2(πκ) + sin4 �

4

)
, (38)

does not depend on the initial value vi . This implies that
if we start with a certain velocity distribution f (v), the
entire distribution is uniformly shifted by −λc/T every N0

pulses: f (v) →N0 f (v + λc/T ). Thus, the radiative force
exerted by FC with fixed parameters does not lead to velocity
compression—there is no cooling.
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Notice that the above analysis has neglected the variation of
intensity across comb teeth. Also while there is no compression
of the velocity distribution, there is a residual heating due to
atomic recoil (which arises from treatments beyond our model;
see, e.g., Ref. [3]).

B. Cooling via tuning the FC

In order to compress the velocity distribution, one has to
maintain the positive gradient of the absolute value of the
scattering force in the vicinity of the center of the velocity
distribution. To attain this condition, the scattering force
profile has to follow the center of the velocity distribution,
moving towards the smaller velocities (frequencies) during the
process of deceleration. In other words, the FC tooth closest
to the atomic transition frequency ωeg1 (in the reference frame
moving with the center of the velocity distribution) has to
be somewhat red-detuned from ωeg1 . Tuning the positions of
the FC teeth and consequently the scattering force profile can
be achieved by tuning the phase of pulses during the cooling
process [9].

Initially, we start with some velocity distribution f (v,t =
0). To optimize the number of cooled atoms, we focus on atoms
with velocities grouped around the position of the maximum
of f (v,t = 0), i.e., the most probable velocity vmp(t = 0).
Radiative force will cause both the distribution f (v,t) and the
most probable velocity vmp(t) to evolve in time.

To maximize the rate of compression, the friction coefficient
needs to be kept at its maximum value at vmp(t). We may
satisfy this requirement by tuning the phase offset φ(mT ) =
�[(m + 1)T ] − �(mT ) according to

φ(t) = −[δ + kcvmp(t)]T − η̄β, (39)

where η̄β , Eq. (35), depends only on (time-independent) values
of γ T , �, and 
12/ωrep. As vmp(t) becomes smaller due to the
radiative force, the offset phase needs to be reduced.

We may find the required pulse-to-pulse increment of the
phase offset explicitly:


φT = φ((m + 1)T ) − φ(mT ) = −kcT

M

p(η̄β) . (40)

When the phase offset is driven according to Eq. (40),
there is a dramatic change in the time evolution of the
velocities of individual atoms. As the phase offset is varied
over time, the entire frequency-comb structure shifts towards
lower frequencies. As the teeth sweep through the velocity
space, atomic v(t) trajectories are “snow-plowed” by teeth,
ultimately leading to narrow velocity spikes collected on the
teeth. This emergence of a velocity comb was discussed in
Ref. [9] for a two-level system. Formally, we may separate
initial velocities into groups:

vmp(t = 0) + (2π (n − 1) − η̄β)/kcT < v(t = 0)

< vmp(t = 0) + [2πn − η̄β]/kcT ,

n = 0,±1 . . . . (41)

The width of each velocity group is equal to the distance
between neighboring teeth in velocity space, 2π/kcT . As
a result of snow-plowing, the nth group will be piled up
at vn(t) = vmp(t) + 2πn/kcT . The final velocity spread of

FIG. 6. (Color online) Time evolution of the velocity distribution
for a thermal beam subjected to a coherent train of laser pulses. The
pulse-to-pulse phase offset of the train is varied linearly in time as
prescribed by Eq. (40). N is the number of pulses. (a) Atomic and
pulse-train parameters are γ T = 0.25, � = π/2. The optimal phase
detuning is η̄ = −1.23. The center of the initial velocity distribution
is vmp = 500 m/s.

individual velocity groups will be limited by the Doppler
temperature, TD = h̄γ /2kB .

To illustrate the train-driven time evolution for the entire
ensemble, we consider a one-dimensional (1D) thermal beam
characterized by the initial velocity distribution:

f (v,t = 0) = v3

2ṽ0
4 exp

(
− v2

2ṽ0
2

)
. (42)

The most probable vmp, average vavg, and the rms values (vrms)
are expressed in terms of ṽ0 as

vmp =
√

3̃v0, vavg =
√

9π

8
ṽ0, vrms = 2̃v0. (43)

The value of vmp is the most probable velocity at t = 0. A
typical time evolution of the velocity distribution is shown in
Fig. 6. Local compression of the velocity distribution happens
near the points vc(t) + λcn/T , n = 0,±1, . . ., where vc is
the time-dependent position of the velocity distribution center.
Clearly, velocity distribution, while initially being continuous,
after a certain number of pulses develops a comblike profile.
This is the velocity comb of sharp peaks separated by equal
intervals λc/T in the velocity space.

IV. CONCLUSION

In this paper we studied Doppler cooling of a three-level
�-type system driven by a train of ultrashort laser pulses.
An analytical expression for the scattering force was obtained
and its dependence on the FC parameters was analyzed. The
scattering force Fsc is linearly proportional to the quasi-
steady-state postpulse excited-state population. Its spectral
(velocity) dependence exhibits a periodic pattern mimicking
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the spectrum of the frequency comb. The contrast of the
spectral profile of Fsc is a function of the ratio between
the excited-state lifetime and the pulse repetition period,
the effective single-pulse area and the residual detunings δ̄j

between the frequencies of individual transitions and nearest
FC teeth. In a particular case when the pulse repetition period is
much longer than the lifetime of the excited state, the spectral
dependence of the scattering force reflects the broadband
spectral profile of a singe pulse.

The residual detunings δ̄j can be optimized to maximize the
scattering force. At optimally chosen detunings the maximum
of the scattering force is reached at a single-pulse area
equal to π . However, for π pulses the spectral dependence
of the scattering force is lost and consequently the friction
coefficient vanishes. To optimize the cooling process one
has to compromise between maximizing the scattering force

and its velocity capture range and maintaining a sufficient
gradient of the scattering force (friction coefficient). The
spectral profile of the scattering force and consequently the
friction coefficient can be varied in time to follow the moving
center of the velocity distribution of a decelerating ensemble.
This can be realized by simply tuning the carrier envelope
phase offset. Such manipulation enables sustained velocity
distribution compression as the atoms slow down. As a result,
an initially smooth velocity distribution of a thermal beam
evolves into a series of narrow groups of velocities separated
by λc/T , the so-called velocity comb.
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