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Abstract
We carry out relativistic many-body calculations of the static and dynamic dipole
polarizabilities of the ground 6s2 1S0 and the first excited 6s6p 3Po

0 states of Yb. With these
polarizabilities, we compute several properties of Yb relevant to optical lattice clocks
operating on the 6s2 1S0–6s6p 3Po

0 transition. We determine (i) the first four magic wavelengths
of the laser field for which the frequency of the clock transition is insensitive to the laser
intensity. While the first magic wavelength is known, we predict the second, the third and the
fourth magic wavelengths to be 551 nm, 465 nm and 413 nm. (ii) We re-evaluate the effect of
black-body radiation on the frequency of the clock transition, the resulting clock shift at
T = 300 K being −1.41(17) Hz. (iii) We compute long-range interatomic van der Waals
coefficients (in a.u.) C6(6s2 1S0 + 6s2 1S0) = 1909(160), C6(6s2 1S0 + 6s6p 3P0) = 2709(338)

and C6(6s6p 3P0 + 6s6p 3P0) = 3886(360). Finally, we determine the atom-wall interaction
coefficients (in a.u.), C3(6s2 1S0) = 3.34 and C3(6s6p 3P0) = 3.68. We also address and
resolve a disagreement between previous calculations of the static polarizability of the ground
state.

1. Introduction

The ytterbium atom is employed in a number of projects aimed
at studying fundamental problems of modern physics by means
of atomic physics. A large parity-violating signal on the
6s2 1S0–6s5d 3D1 408 nm transition of Yb has been recently
observed at Berkeley [1]. A search for the CP-violating (T-, P-
odd) permanent electric dipole moment of Yb was initiated [2].
A Bose–Einstein condensate in a dilute gas of the ground-state
Yb atoms has been attained [3] and a number of experiments
with ultracold Yb atoms have been carried out (see, e.g.,
[4–6]).

Here we focus on the optical lattice clock applications
of Yb. In optical lattice clocks, neutral atoms are trapped
in a standing wave of laser light (optical lattice) operated
at a certain ‘magic’ wavelength [7]. At this wavelength a
differential light perturbation of the two clock levels vanishes
exactly. Using Yb atom in lattice clocks was proposed in [8]
and experimentally demonstrated in Boulder [9, 10]. Apart
from numerous technical applications, such atomic clocks may
be used for searching for a variation of fundamental constants

[11], mapping out atom–wall interaction [12] and serve as a
basis for quantum information processing (see, e.g., [13, 14]).

In the present paper, we evaluate dynamic electric-dipole
polarizabilities of the clock states, 6s2 1S0 and 6s6p 3Po

0.
Dynamic polarizabilities of real and imaginary frequencies
are linked to a variety of important atomic and molecular
properties. In particular, we compute magic wavelengths, the
effect of black-body radiation on the frequency of the clock
transition, atom–wall interaction constants C3 and finally,
long-range molecular van der Waals coefficients C6 for the
clock states. We take advantage of a close link between
these properties and improve our theoretical predictions by
referencing to measured properties, such as the first magic
wavelength [9, 15] and the van der Waals coefficient for two
ground-state atoms [5].

Ytterbium has been studied both experimentally (see,
e.g., [5, 6, 9, 10, 15–18]) and theoretically (see, e.g.,
[8, 19–26]. Trapping and cooling schemes were discussed
and implemented, the frequency of the clock transition was
measured to a high accuracy [10], the first magic wavelength
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[9, 15] and the van der Waals coefficient for the ground state
of Yb were also measured [5].

Theoretical studies are not free from controversy. The
calculated polarizability of the Yb ground state reported in [20]
is in disagreement with most other ab initio or semi-empirical
analyses. The source of this disagreement is explained below
and the discrepancy is resolved. The resolution is closely
related to the role of the excitations from the core which
are discussed in detail. The corresponding statement can
be formulated as a general theorem: Consider a second-
order transition matrix element, involving summation over a
complete set of intermediate states. Then, a contribution from
a subspace spanned by degenerate states does not depend
on mixing of these states. This statement has implications
not only for computing polarizabilities, but also for the two-
photon transition amplitudes, parity-violating amplitudes, and
other properties in Yb and other atoms.

2. Method of calculation

In this section, we start by recapitulating expressions for
dynamic polarizability and its relations to magic wavelengths,
and atom–atom and atom–wall interaction coefficients. Next
we discuss our computational relativistic many-body method.

The ac Stark shift of an energy of a spherically symmetric,
J = 0, atomic state v in electro-magnetic wave of amplitude
ε and frequency ω is given by

�Ev(ω) = −αv(ω)
(ε

2

)2
, (1)

where the electric-dipole dynamic polarizability reads (we use
atomic units in which h̄ = 1, |e| = 1 and me = 1)

αv(ω) = 2

3

∑
k

Ek − Ev

(Ek − Ev)2 − ω2
〈v‖d‖k〉2 . (2)

Here d is an electric dipole operator and summation is over a
complete set of many-body states.

The magic laser frequency ω∗ is found from the condition
that the ac Stark shifts of both clock states v and w are identical
so that the frequency of the transition does not depend on the
laser intensity,

�Ev(ω) − �Ew(ω) = −(αv(ω) − αw(ω))
(ε

2

)2
= 0. (3)

Simply, at the magic frequencies, αv(ω
∗) = αw(ω∗).

The clock frequency shift due to black-body radiation is
expressed in terms of the difference of static polarizabilities of
the two clock levels (see detailed discussion in [21]).

We also require atomic polarizabilities evaluated at purely
imaginary frequencies

αv(iω) = 2

3

∑
k

Ek − Ev

(Ek − Ev)2 + ω2
〈v‖d‖k〉2. (4)

These are used in evaluating the atom–wall interaction constant
C3 [27]

C3 = 1

4π

∫ ∞

0
α(iω) dω, (5)

and the van der Waals coefficients C6. For two separated atoms
in states w and v,

C6(w + v) = 3

π

∫ ∞

0
αw(iω)αv(iω) dω. (6)

The C6 for two atoms interacting in identical states is
subsumed by the above formula. Equation (6) is derived under
assumption that there are no downwards dipole transitions
from either w or v state, which holds in our case.

It is clear that for computing the polarizabilities, we need
to determine electric dipoles and energies, and to perform the
summation over a complete set of atomic states. To this end,
we use a combination of the configuration-interaction (CI)
method and the many-body perturbation theory (MBPT) to
construct an effective Hamiltonian for two valence electrons
(the CI+MBPT method [28, 29]). Further, we employ
the Dalgarno–Lewis method [30] to reduce the summation
over a complete set of many-electron states to solving an
inhomogeneous system of linear equations.

2.1. CI+MBPT method

The ground-state configuration of Yb is 4f146s2 and most of the
low-energy excited states correspond to configurations with
one of the 6s electrons being excited. All these states can
be represented to a relatively high accuracy as states with
two valence electrons above a closed-shell core. This is
the starting point of our calculations: the computational (CI)
model space is spanned by all possible excitations of the two
valence electrons. Implications arising from the states with
excitations from the outer 4f core subshell will be discussed
below.

The effective CI+MBPT Hamiltonian for two valence
electrons has the form

Ĥ eff = ĥ1(r1) + ĥ1(r2) + ĥ2(r1, r2), (7)

where ĥ1 is the single-electron part of the relativistic
Hamiltonian

ĥ1 = cα̂ · p + (β̂ − 1)mec
2 − Ze2

r
+ V N−2 + �̂1 (8)

and ĥ2 is the two-electron part of the Hamiltonian

ĥ2(r1, r2) = e2

|r1 − r2| + �̂2(r1, r2). (9)

In these equations, α̂ and β̂ are the conventional Dirac
matrices, V N−2 is the Dirac–Hartree–Fock (DHF) potential of
the closed-shell atomic core (N − 2 = 68, Z = 70) and �̂ is
the correlation operator. It represents terms in the Hamiltonian
arising due to virtual excitations from atomic core (see [28, 29]
for details). �̂ ≡ 0 corresponds to the standard CI method.
�̂1 is a single-electron operator. It represents a correlation
interaction (core-polarization) of a particular valence electron
with the atomic core. �̂2 is a two-electron operator. It
represents screening of the Coulomb interaction between the
two valence electrons by the core electrons. We calculate �̂

in the second order of the MBPT. We use a B-spline technique
[31] to construct a pseudospectrum. We use 40 B-splines in
a cavity of radius R = 40 aB and calculate the eigenstates
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Table 1. Energy levels of Yb (cm−1). The 4f135d6s2(7/2, 5/2)o
1

level lies outside of the computational model space.

CI+MBPT

State J Exp. [32] ab initio Rescaled �̂1

4f146s2 1S 0 0.0 0.0 0.0
4f146s6p 3Po 0 17 288 18 246 17 289

1 17 992 18 946 17 996
2 19 710 20 688 19 759

4f145d6s 3D 1 24 489 24 922 24 489
2 24 752 25 195 24 743
3 25 271 25 765 25 276

4f146s6p 1Po 1 25 068 26 463 25 611
4f135d6s2 (7/2, 5/2)o 1 28 857

4f145d6s 1D 2 27 678 28 485 27 812
4f146s7s 3S 1 32 695 33 262 32 668
4f146s7s 1S 0 34 351 34 871 34 280

of the V N−2 DHF Hamiltonian up to the maximum value of
the angular momentum lmax = 5. The same basis is used in
computing �̂ and in constructing the two-electron states for
the valence electrons. 30 out of 40 lowest-energy states for
every l up to lmax = 5 are used to calculate �̂ and 14 lowest
states above the core are used for every l up to lmax = 4 to
construct the two-electron states.

The two-electron valence states are found by solving the
eigenvalue problem,

Ĥ eff�v = Ev�v , (10)

using the standard CI techniques. Calculated and experimental
energies of a few lowest-energy states of Yb are presented in
table 1. One can see that the pure ab initio energies are already
close to the experimental values. However, for improving the
accuracy further, we re-scale the correlation operator �̂1 by
replacing �̂1 in the effective Hamiltonian (7) in each partial
wave s, p1/2, p3/2, . . . by fa�̂1. The rescaling factors are
fs = 0.8772, fp = 1.03, fd = 0.933 and ff = 1. These
values are chosen to fit the experimental spectrum of Yb. The
result of the fitting is shown in table 1. Note that the fitting
is not exact for all the levels because the number of levels is
larger than the number of fitting parameters.

Transition amplitudes are found with the random-phase
approximation (RPA) [33, 34]

E1vw = 〈�v‖dz + δV N−2‖�w〉, (11)

where δV N−2 is the correction to the core potential due to
core polarization by an external electric field. We compile our
representative dipole matrix elements in table 2. The values
were computed in the CI+MBPT approach. We also compare
with a high-precision result [16] derived from fitting molecular
long-range potentials to photoassociation spectra taken with
ultracold samples. The 16% theory–experiment disagreement
for the 6s2 1S0–6s6p 1Po

1 amplitude is due to mixing of the
6s6p 1Po

1 state with the core-excited state 4f135d6s2(7/2, 5/2)o
1,

which lies outside the computational model space (see
section 3.)

Table 2. Reduced matrix elements (a.u.) of the electric dipole
operator for transitions in Yb. Values were computed in the
CI+MBPT approach. The theory–experiment disagreement for the
6s2 1S0–6s6p 1Po

1 is due to mixing of the 6s6p 1Po
1 state with the

core-excited state 4f135d6s2(7/2, 5/2)o
1, which lies outside the

computational model space (see section 3.)

Transition Calculated Experimental

6s2 1S0–6s6p 3Po
1 0.587

6s2 1S0–6s6p 1Po
1 4.825 4.148(2)a

6s6p 3Po
0–5d6s 3D1 2.911

6s6p 3Po
0–6s7s 1S0 1.952

a Reference [16].

2.2. Dalgarno–Lewis and RPA methods

Computing polarizability requires summing over a complete
set of many-body states. The CI+MBPT subspace of two
valence electrons covers only a part of this set. The other class
of the intermediate state are core excitations, where the valence
electrons serve as spectators. Note that even in the independent
particle picture, the state of the valence electrons affects
possible core excitations: core electrons cannot be promoted
into excited orbitals occupied by the valence electrons due to
the Pauli exclusion principle. Following this discussion, we
divide the polarizability into three parts [27]:

α(ω) = αval(ω) + αcore(ω) + αcore−val(ω).

The valence contribution, αval(ω), is given by (2) where v

and k are two-electron CI states (i.e., k lie entirely in the model
space). We use the Dalgarno–Lewis method [30] for summing
over a complete set of two-electron states. In this method, a
correction δ�v to the two-electron wavefunction of the state
v is introduced and the contribution of the valence electrons
to the polarizability is expressed as (here we consider static
polarizability)

αval(0) = 2
3 〈δ�v‖d‖�v〉. (12)

The correction δ�v is found by solving the system of linear
inhomogeneous equations

(Ĥ eff − Ev)δ�v = −(dz + δV N−2)�v. (13)

In the case of dynamic polarizabilities we employ the identity

Ek − Ev

(Ek − Ev)2 − ω2
= 1

(Ek − Ev) − ω
+

1

(Ek − Ev) + ω
,

i.e., equations (13) need to be solved twice at two different
energies E = Ev ±ω. For polarizabilities of purely imaginary
argument, ω → iω in the above equations.

The core polarizability is found using the RPA method
[35] (linearized response theory). This method yields required
eigen-energies of many-body particle–hole excitations from
the core and relevant electric–dipole transition amplitudes.
The dynamic core polarizability reads

αcore(iω) =
∑
ωμ>0

fμ

(ωμ)2 + ω2
. (14)

Here the summation is over particle–hole excitations from the
ground state of the atomic core; ωμ are excitation energies and
fμ are the corresponding electric-dipole oscillator strengths.

3
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Technically, compared to the original, differential-equation
method of [35], we use a B-spline basis set expansion. An
important property of the RPA core polarizability is that it
satisfies (non-relativistically) the Thomas–Reiche–Kuhn sum
rule, limω→∞ ω2αcore(iω) = N−2. This property is especially
important in evaluating the C3 and C6 coefficients for heavy
atoms [27].

Finally, the core–valence counter term, αcore−val(ω), is
small. At the DHF level, we find that the relevant contributions
to static polarizabilities are below 1% and we neglect it at our
present level of accuracy.

3. The role of the 4f146s6p 1Po
1–4f135d6s2(7/2, 5/2)o

1
mixing

There is a number of relatively low-lying states in the discrete
spectrum of Yb which have an excitation from the outer
4f subshell of the core. These states certainly cannot be
considered as states with two valence electrons above closed
shells. One of such states is 4f135d6s2(7/2, 5/2)o

1 which
lies close to the 4f146s6p 1Po

1 state (see table 1). Note that
both states have the same total angular momentum and parity.
Therefore the Coulomb interaction strongly mixes the two
states. This mixing complicates the calculations. Our effective
Hamiltonian (7) does take into account excitations from the
core via second-order correlation operator �̂. Yet, the second-
order approximation is not adequate in this particular case, as
the two states are separated by mere 0.0173 a.u. (3789 cm−1).

The calculation of the ground-state polarizability is
affected by the 4f146s6p 1Po

1–4f135d6s26(7/2, 5/2)o
1 mixing.

The 6s2 1S0 → 6s6p 1Po
1 electric dipole transition contributes

about 90% to the polarizability of the ground state.
Corresponding theoretical CI+MBPT transition amplitude,
4.825 a.u., deviates significantly from the experimental value
4.148 a.u. [16]. As was pointed out in [19] the reason for this
disagreement is the above-mentioned mixing.

Calculation of the core polarizability displays a similar
dependence on the mixing. Our RPA result for αcore(0) =
6.39 a.u. At the same time, semi-empirical result [24] based
on the lifetime measurements of low-lying core-excited states
in Yb suggests a much higher value of 24(4) a.u. Again, the
reason for this large difference lies in the strong mixing of
the 4f135d6s2(7/2, 5/2)o

1 and 4f146s6p 1Po
1 states. Indeed, in

the RPA core polarizability calculations, we consider a
different system, Yb2+, which is unaware of the presence of
the two valence electrons.

Since the 6s2 1S0 → 6s6p 1Po
1 transition contributes about

90% to the polarizability of the ground state, the authors of
[20] suggested to replace the CI+MBPT dipole matrix element
by its experimental value. This was made to improve the
accuracy of computing the polarizability. Below we argue
that such a substitution cannot be justified unless a similar
correction is done for the 4f7/2 → 5d5/2 transition amplitude
in the calculation of the core polarizability.

Let us use the following notation for the pure (unmixed)
states:


1 = ∣∣4f146s6p 1Po
1

〉
,


2 = ∣∣4f135d6s2 (7/2, 5/2)o
1

〉
.

The mixed states can be written as

�1 = 
1 cos φ − 
2 sin φ,

�2 = 
1 sin φ + 
2 cos φ,

where φ is the mixing angle.
Let also use �0 ≡ 
0 for the ground-state wavefunction.
If we neglect a small energy difference between the

states �1 and �2 (the relevant energy denominators entering
α(0) differ by about 10%) then their total contribution to the
polarizability of the ground state is proportional to

〈�0‖d‖�1〉2 + 〈�0‖d‖�2〉2 = 〈
0‖d‖
1〉2 + 〈
0‖d‖
2〉2

(15)

and does not depend on the mixing angle φ. This means that
either bases {
0,
1,
2} or {�0, �1, �2} can be used in the
calculations. The ab initio calculations within the CI+MBPT
framework in which Yb is considered as a two-valence-
electrons atom use the non-mixed basis, while the analysis
based on experimental data naturally corresponds to the use of
the mixed basis. Both approaches produce close results as will
be demonstrated in section 5. By contrast, the substitution of
the experimental value for the

〈
6s2 1S0|D|6s6p 1Po

1

〉
transition

amplitude is equivalent to using the mixed non-orthogonal
basis {�0, �1, 
2}. This seems to introduce a large error into
the calculation of the polarizability. Indeed, the value reported
in [20, 21] is 111.3 a.u. which is about 30% smaller than
the results of most ab initio calculations and semi-empirical
analyses, compiled in table 3. For example, the analysis [24]
of the experimental data yielded α1S0(0) = 136.4(4.0) a.u.

The result of [20, 21] is brought into an agreement with
that of [24] by consistently correcting the core polarizability
for the mixing. A DHF contribution from the 4f subshell
to core polarizability is 1.9 a.u. If we replace this value
by the value [24] based on experimental data (i.e., account
for the mixing), 24(4) then the result of [20] increases to
α1S0(0) = 133 a.u. consistent with the value of 136.4(4.0) a.u.

from [24].
It is useful to find out what happens if the difference

in energies of the two mixed states is not neglected. We
will use a shorthand notation �E1 = E(�1) − E(�0),
�E2 = E(�2) − E(�0) and δ = 1/�E2 − 1/�E1. Since
the state �2 ≡ 4f135d6s26(7/2, 5/2)o

1 is above the state
�1 ≡ 4f146s6p 1Po

1 the parameter δ is negative. Further,
A01 = 〈
0‖d‖
1〉 and A02 = 〈
0‖d‖
2〉.

A partial contribution of the two states into the
polarizability reads

δα = 1

�E1

(
A2

01 + A2
02

)
+ δ(A01 sin φ + A02 cos φ)2. (16)

We see that when the core-excited states lie above the states
with which they are mixed, the correction to the polarizability
due to this mixing is negative. This is the case for both
polarizabilities of Yb considered in this work. We keep this
in mind while analysing the accuracy of the calculations in
section 5.

4
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Table 3. Static electric-dipole polarizability α(0) (in a.u.) of the
6s2 1S0 and 6s6p 3Po

0 clock states of a Yb atom in various
approximations and comparison with literature values.

α(0),1S0 α(0),3Po
0 Comment

This work
138.9 315.9 ab initio with no fitting
145.7 301.6 Energies are fitted by rescaling �̂1

139.1 With a correction to α(1S0)to fit the
magic frequency ω = 0.0600 a.u.

135.2 Using experimental data for dominant
contributions

138.8 Rescaled to fit experimental data[5] for
C6 = 1932(30) a.u.

141(6) 302(14) Final

other
131.6 Wang et al [37]; density functional

theory, 1995
145.3 Wang and Dolg [38]; CCSD(T), 1998
141.7 Miller [39]; density functional theory,

2002
118(45) 252(25) Porsev et al [19]; CI+MBPT, 1999
111.3(5) 266(15) Porsev and Derevianko [20, 21];

CI+MBPT, 2006
154.7 Buchachenko et al [40]; CCSD(T),

2006
136.4(4.0) Zhang and Dalgarno [24]; based on

experimental data, 2007
157.3 Chu et al [23]; density functional

theory, 2007
143 Recommended value by Zhang and

Dalgarno [24], 2007
144.59 Sahoo and Das [26]; relativistic

coupled-cluster theory, 2008

4. Mixing of degenerate states

In the previous section, we considered a particular case of
mixing of the 4f146s6p 1Po

1 and 4f135d6s26(7/2, 5/2)o
1 states

of Yb and demonstrated that this mixing can be ignored in
the ab initio calculations of the ground-state polarizability
of Yb. Note that similar problems arise in computing
the polarizability of the 3Po

0 state and in many other cases
not limited to calculations of the polarizabilities of Yb.
Therefore, it may be useful to treat a general case and
formulate the following theorem: Consider a second-order
transition amplitude, involving summation over a complete set
of intermediate states. Then, a contribution from a subspace
spanned by degenerate states does not depend on mixing of
these states.

A generic contribution to a second-order transition
amplitude can be written as (here E0 is some energy off-set)

Aif =
∑
m

〈Ff|P̂ |Fm〉〈Fm|Q̂|Fi〉
E0 − Em

(17)

Here Fi and Ff are some initial and final atomic states, and P̂

and Q̂ are some operators. Let us assume that the summation
over the complete set of intermediate states Fm subsumes a
summation over a group of degenerate states D and rewrite the
corresponding partial contribution as

�Aif = 1

�E

∑
m∈D

〈Ff|P̂ |Fm〉〈Fm|Q̂|Fi〉. (18)

Here the summation ranges only over degenerate states and
�E is their common energy denominator.

As in the previous section, we introduce the pure non-
mixed basis states 
k and rewrite the real (mixed) states Fm

as an expansion

Fm =
∑

k

cmk
k. (19)

Both sets 
 and F can be made orthonormal, with the matrix
C = {cmk} being a unitary matrix, i.e., CC† = I . Substitution
of (19) into (18) leads to

�Aif = 1

�E

∑
kl

〈Ff|P̂ |
k〉〈
l|Q̂|Fi〉
∑
m

cmkc
∗
ml

= 1

�E

∑
k

〈Ff|P̂ |
k〉〈
k|Q̂|Fi〉. (20)

Here we used the ortho-normality condition,
∑

k ckmc∗
kl = δml .

We see that the final expression does not depend on the mixing
coefficients c.

We stress two conditions under which this theorem is
valid. It is assumed that the unmixed states possess the same
energy and that there is no mixing with the states outside the
degenerate subspace. These two conditions are probably never
fulfilled exactly. However, there is a large number of cases
when they are fulfilled approximately. One of the criteria
is that the average energy spread in the quasi-degenerate
subspace |δED| 
 |E0 − ĒD|, where ĒD is the average energy
in the subspace.

Why is this practically important? In Yb, to rigorously
account for the mixing, one has to extend the two-valence-
electron model space to include computationally expensive
core-excited states. The theorem claims that while computing
polarizabilities, a much smaller two-valence-electron space
would suffice. In other words, at the CI stage, the excitations
from the 4f subshell can be safely ignored (even) if there
are nearby two-electron states of the same symmetry. (Of
course, virtual core excitations are included in the self-energy
MBPT operator �.) Excitations from the core will have to be
included into calculation of the polarizability of the core. This
corresponds to working with the non-mixed basis 
k .

The independence on mixing explains why pure two-
valence ab initio calculations of polarizabilities give good
results for Yb despite its complicated structure. This should
be true not only for polarizabilities but also for two-photon
transition amplitudes, parity non-conservation, etc, and not
only for Yb but for some other atoms as well.

5. Results and discussion

5.1. Static polarizabilities

Our computed static polarizabilities of the clock states are
presented in table 3. There we tabulate values obtained in
various approximations and we also compile results from
the literature. Below we analyse our results and estimate
theoretical uncertainties.

The first line of table 3 lists the results of pure ab initio
calculations, next line gives the results obtained when energies

5
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are fitted as explained in section 2. Then, to gauge the
accuracy of the calculations, we introduce various corrections
to the polarizability of the ground state based on available
experimental data. In the third line of the table we correct α0

to reproduce the experimental value for the magic frequency
[9, 15]. This correction will be explained in the following
section. The fourth value (135.2) is obtained by replacing the
dominant ab initio contribution by semi-empirical values. This
corresponds to changing from the unmixed 
1, 
2 bases to the
mixed �1, �2 bases (see section 3 for details). Specifically,
we use the value 4.148 a.u. [16] for the 〈6s2 1S0‖d‖6s6p 1P1〉
transition amplitude and δα = 24(4) [24] for the contribution
of the excitations from the 4f core subshell. The resulting
value is smaller than both ab initio results (with and without
fitting) consistent with our observation made at the end of
section 3. Finally, we rescale α(0) of the ground state to
fit the experimental value for the van der Waals coefficient
C6 [5]. Since C6 is simply obtained by integrating α(iω)2,
equation (6), and both the integral and the static polarizability
are dominated by the principal transition, the uncertainties of
α(0) and C6 are correlated (see a detailed discussion in [36]).
The final value for the ground state and its uncertainty, 141(6),
are chosen to cover the spread of our numbers in the table.

Now we turn to the polarizability of the 3Po
0 state. The

central point of our final value is chosen to coincide with the
fitted value. Choosing the lower calculated value as the central
point is justified by the fact that there is a correction due to
excitations for 4f and this correction is negative (see the end
of section 3 for details). The value of this correction must be
smaller than that for the ground state because corresponding
states with excitations from 4f are higher in the spectrum and
closer to the neighbouring two-electron states of the same
symmetry. Note that the polarizabilities of both clock states
end up having a comparable fractional accuracy. Qualitatively,
this may be explained that while the convergence with respect
to increasing basis is slower for the 3Po

0 state, calculations for
the 1S0 state are affected more strongly by the core-excited
states.

Results of other calculations and semi-empirical analyses
are presented in table 3 for comparison. For the ground
state note a good agreement with the value of [24], α(0) =
136.4(4.0), derived using only experimental data. The value
α(0) = 143 recommended by the same authors is also
consistent with our result.

The result for the ground-state polarizability is in
a disagreement with previous calculations [19–21]. As
discussed in section 3 the disagreement for 1S0 comes from
the inconsistent use of experimental matrix element for the
principal transition in these works. As for the 3Po

0 state, the
present result and that of [21] differ by about two standard
deviations and in experimental work this level of agreement
between two values would be acceptable.

Finally, let us emphasize that evaluating accuracy of
theoretical calculations is a non-trivial exercise and due to
the lack of high-accuracy experimental data for the 3Po

0 state,
the uncertainty in [21] was estimated as a half of the difference
between pure ab initio result and the result obtained with the
fitting of the energy. This may be an unreliable estimate.

Table 4. Magic wavelengths for the 6s2 1S0 → 6s6p 3Po
0 transition

in Yb and values of dynamic polarizabilities at corresponding
frequencies (a.u.).

ab initio Correcteda Experiment

λ (nm) α (ω) (a.u.) λ (nm) α(ω) (a.u.) λ (nm)

749.0 193 759.37 186 759.355b

552.2 46 551.5 60
459.3 478 465.4 382
413.2 1246 413.25 817
359.7 −742 402.55c 365c

a α1S0
(ω) is corrected to fit experimental magic frequency.

b Reference [15].
c Unreliable.

Suppose we carry out a similar analysis based on the present
calculations for the ground state. Fitting energy in �1 moves
our ab initio result, 138.9, to 145.7, so using prescription of
[21] would yield 145.7(3.4) which is displaced compared to
and is as twice as accurate as our final value of 141(6).

5.2. Magic frequencies

Magic frequencies are frequencies of the laser field at which
the ac Stark shifts of both clock levels are the same so that
the frequency of the clock transition is insensitive to the laser
intensity. Magic frequencies, ω∗, are found from the condition

α1S0(ω
∗) = α3P0(ω

∗). (21)

The first five calculated magic frequencies for Yb are presented
in table 4. The first frequency was measured to a high precision
[9, 15]. Our ab initio calculations reproduce it with the 1.3%
accuracy. The accuracy for the other frequencies is likely to
be worse. This is because the energy denominators for the
dynamic polarizabilities (2) are shifted by the frequency of the
laser field and the assumption that the difference in energies
of the 4f146s6p 1Po

1 and4f135d6s26(7/2, 5/2)o
1 states can be

neglected becomes less accurate (see section 3 for details).
To improve the accuracy of predicting the magic

frequencies and corresponding polarizabilities we modify
formula (2) in two ways. First, we use experimental data
for the dominant terms: 〈6s2 1S0‖d‖6s6p 1P1〉 = 4.148 [16]
and 〈6s2 1S0‖d‖4f135d6s2 (7/2, 3/2)o

1〉 = 2 [41]. Second, we
introduce a correction to simulate the effect of other excitations
from the 4f core shell,

�α = A2

3

(
1

E − ω
+

1

E + ω

)
, (22)

where E = 37 414.59 cm−1 is the energy of the nearby state
with the excitation from the core and A is a fitting parameter.
Its value is chosen to fit experimental magic frequency. The
rest of contributions are taken from the ab initio calculations.

The above empirical correction has been introduced for
the ground state only. The polarizability of the upper
clock state was computed within the CI+MBPT method
for the valence contribution and the DHF method for core
polarizability.

The values of magic frequencies and corresponding
polarizabilities calculated with this empirical correction are
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Table 5. Atom–wall interaction coefficients C3 and van der Waals coefficients C6 (a.u.) for the 6s2 1S0 and 6s6p 3Po
0 states of Yb.

Value Comment

Atom–wall interaction
C3

1S0 3.34 Calculated This work
C3

3Po
0 3.68 Calculated This work

Atom–atom interaction
C6

1S0 + 1S0 1909(160) Calculated This work
2300(250) Experimental Enomoto et al [17]
1932(35) Experimental Kitagawa et al [5]
2400–2800 Calculated Buchachenko et al [40]
2292 Calculated Chu et al [23]
2062 Calculated Zhang and Dalgarno [24]

C6
3Po

0 + 3Po
0 3886(360) Calculated this work

C6
1S0 + 3Po

0 2709(338) Calculated this work

0.02 0.04 0.06 0.08 0.10

-200

200

400

600

800

Figure 1. Dynamic polarizabilities of the two clock levels. ‘Magic’
conditions occur when the two polarizabilities intersect off
resonance. These are marked by small circles on the plot.

(This figure is in colour only in the electronic version)

listed in the third and fourth columns of table 4 and the
ac polarizabilities are shown in figure 1. We see that the
results for the first four magic frequencies change little, while
those for the fifth magic frequency vary significantly. Still,
while difficult to predict, the fifth magic frequency may be
of practical interest for designing better clocks: by contrast
to the first four frequencies, the ac polarizability here may be
negative (that was the ab initio prediction, but the empirical
correction flipped the sign of the polarizability). Because
of that, the atoms are trapped at the minima of the laser
intensity, which reduces perturbations of the clock frequency
[42].

Finally, using the modified formula at ω = 0 provides
another accuracy test for our predicted static polarizability of
the ground state (section 5.1). The resulting value, 139.1 a.u.,
was listed in table 3 and used in estimating the accuracy of the
calculations.

5.3. Black-body radiation shift

The effect of black-body radiation (BBR) on the frequency
of the Yb clock transition is expressed in terms of the static
polarizabilities. The relevant clock shift reads (see detailed
derivations in [21])

δνBBR ≈ − 2

15
(αfsπ)3 T 4

{
α3P0(0) − α1S0(0)

}
, (23)

where T is the temperature and αfs is the fine-structure
constant. With our polarizabilities we find at T = 300 K,
δνBBR = −1.41(17) Hz which is in good agreement with
the result, δνBBR = −1.34(13) Hz, of [21] despite our
significant differences in values of individual polarizabilities.
The agreement is fortuitous, as both polarizabilities of [21]
are smaller, most of the shift cancelling out while taking
the difference in equation (23). Note, however, that a
somewhat smaller uncertainty reported in [21] is mostly due
to overestimating the theoretical accuracy for polarizabilities,
especially for the ground state. See sections 3 and 5.1 for
details.

It is worth emphasizing that at the time of writing,
the BBR correction is the leading uncertainty in the error
budget of the lattice clocks [10]. The present calculations
demonstrate a difficulty of atomic theory in determining this
important correction accurately. We hope that our analysis
would motivate a further experimental work, for example, on
cryogenically cooled clock chambers to reduce (and ultimately
to accurately determine) the BBR shift.

5.4. Atom–wall interaction coefficients C3 and van der Waals
coefficients C6

We calculate the atom–wall interaction constants C3 and
the van der Waals constant C6 for both clock states using
formulae (5) and (6). The results are presented in
table 5 together with the results of other calculations and
measurements for the C6 coefficient for the ground state.

For two Yb atoms in their ground states we find
C6(

1S0 + 1S0) = 2041 a.u. (CI+MBPT with rescaled �

to fit the energies). However, from our calculations of
the polarizabilities we know that the contributions from the
excitations from the 4f core state are likely to make the
results smaller. Therefore, we rescaled the central point for
C6(

1S0 + 1S0) at twice the rate as for the polarizability of the
ground state (i.e., reduced it by 6.5%). This moves the central
value to 1909 a.u. Since the C6 is obtained as a quadrature of
the square of polarizability, we assign a fractional uncertainty
to C6 as twice as large as that for the static polarizabilities.
Note a good agreement of the ground-state C6 with recent
experimental determinations [5] and with calculations [24].

7
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The results in the table for C6(
1S0 + 3P0) and C6(

3P0 + 3P0)

were obtained in CI+MBPT with rescaled � to fit the energies.
Including core polarizability into computation of C6 is

important. We find that neglecting αcore(iω) reduces the final
result for C6 by about 10%. This is consistent with the earlier
observation [27] for heavy alkali-metal atoms.

Atom–wall interaction coefficients C3 for the clock states
were obtained in CI+MBPT with rescaled � to fit the energies;
these are also listed in table 5. Note that the difference in C3

coefficients for the clock states was computed by us earlier
in [12]. While forming the difference the contribution of
core polarizability cancels out. For individual states, this
contribution is substantial. For example, for the ground state
the result is increased from 2.09 to 3.34 a.u. due to αcore(iω).
As a large fraction of C3 value is accumulated due to the core
excitations, assigning error to C3 is difficult. For example,
to estimate the error in C3 for simpler alkali-metal atoms in
[27], the results of two methods of computing C3, (i) via the
integral of α(iω) and (ii) by computing an expectation value
of some two-body dipole–dipole interaction were compared.
A highly technical evaluation of the expectation value of two-
body operator is beyond the scope of the present paper and we
do not assign uncertainties to C3. We expect that the errors in
C3 are unlikely to exceed 50%.

6. Conclusion

We calculated polarizabilities of the clock states of Yb with
the accuracy of about 5%. The substantial disagreement with
previous calculations for the ground-state polarizability was
explained and resolved. We also computed the first four
magic frequencies of the lattice laser field, the effect of black-
body radiation on the frequency of the clock transition, the
C3 atom–wall interaction constants and the C6 van der Waals
coefficients for both clock states. Polarizabilities, the first
magic frequency and the C6 coefficient for the ground state
are in good agreement with the most accurate calculations
and measurements. The presented data may be of interest
for designing better clocks, for applications of the clocks in
studying the atom–wall interaction and quantum information
processing, and quantifying molecular potentials for ultracold
collision studies.
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