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gauge invariance, and the Dirac sea
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Ponderomotive energy shifts experienced by Rydberg atoms in optical fields are known to be well approximated
by the classical quiver energy of a free electron. We examine such energy shifts quantum mechanically and
elucidate how they relate to the ponderomotive shift of a free electron in off-resonant fields. We derive and
evaluate corrections to the ponderomotive free-electron polarizability in the length and velocity (transverse or
Coulomb) gauges, which agree exactly as mandated by the gauge invariance. We also show how the free electron
value emerges from the Dirac equation through summation over the Dirac sea states. We find that the free-electron
ac Stark shift comes as an expectation value of a term proportional to the square of the vector potential in the
velocity gauge. On the other hand, the same dominant contribution can be obtained to first order via a series
expansion of the exact energy shift from the second-order perturbation theory in the length gauge. Finally, we
numerically examine the validity of the free-electron approximation. The correction to the free-electron value
becomes smaller with increasing principal quantum number, and it is well below a percent for 60s states of Rb
and Sr away from the resonances.
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I. INTRODUCTION

Many of the prominent schemes for realizing quantum
logic gates for quantum computing [1–3], and studying few-
and many-body physics via quantum simulation experiments
using cold Rydberg atoms rely on optically trapped Rydberg
atoms [4,5]. Characterizing optical potentials experienced
by Rydberg atoms plays an essential role in experimental
realization of these schemes [6].

The trapping ac Stark shift seen by the Rydberg atom is
proportional to its dynamic polarizability, which is essentially
that of a free electron quivering in the laser field. The
free-electron polarizability αe(ω) = −e2/(meω

2), where ω is
the field frequency, can be derived from classical arguments
by time averaging the electron kinetic energy in the oscil-
lating electric field [7]. It can be also obtained quantum
mechanically through the first-order perturbation theory, with
the perturbation being proportional to the intensity [8]. We
use atomic units throughout this paper unless specifically
stated otherwise. In these units, the free-electron polarizability
becomes αe(ω) = −1/ω2.

In this paper, we examine the applicability of the free-
electron approximation for Rydberg atoms in length and
velocity gauges to gain insight as to how the exact ac Stark shift
relates to the free-electron value in both gauges. We show that
αe(ω) emerges from a term in the Hamiltonian proportional to
the square of the vector potential A2

VG in the velocity gauge,
whereas it can be recovered to the leading order from a series
expansion of the exact energy shift from the second-order
perturbation theory in the length gauge. We compute the
corrections to the free-electron polarizability and conclude
that the correction to αe(ω) in Rydberg states is relatively
small away from resonances. Our discussion elucidates that
rather than performing an exact sum over states calculation to
evaluate the Rydberg state polarizabilities in the length gauge,
it is simpler to calculate it as an expectation value of A2

VG.
Throughout this paper, we assume plane wave electromagnetic
fields rather than standing wave optical traps. Notice that

otherwise the optical trap intensity variation can substantially
modulate the Rydberg electron polarizability [9].

The paper is organized as follows: In the next section, we
start by reviewing scalar and vector potentials of traveling
waves in the length and velocity gauges. In Sec. II, we derive
ac Stark shifts and polarizabilities in both gauges within
the nonrelativistic formalism, and examine how they reduce
to the free electron value. We then derive the free-electron
polarizability from the fully relativistic Dirac Hamiltonian
in Sec. III, and find that it comes from summation over the
negative energy states in second-order perturbation theory.
We conclude in Sec. IV by presenting numerical results
illustrating the errors made by approximating the Rydberg
state polarizabilities by the free-electron values in the case of
Rb and Sr atoms.

II. SCALAR AND VECTOR POTENTIALS

Electromagnetic fields can be expressed in terms of the
scalar and the vector potentials φ and A. While the physical
fields are unique, there is a certain degree of freedom in the
choice of the potentials. Specifically, electric and magnetic
fields in Gaussian units are F = −∇φ − (∂A/∂t)/c and B =
∇ × A. A gauge transformation

φ → φ − 1

c

∂χ

∂t
, (1)

A → A + ∇χ, (2)

leaves the physical quantities F and B unchanged, if χ satisfy
the Lorentz condition [10]. The gauging function χ allows
us to transform between different representations of A and
φ in different gauges, although the physical quantities, e.g.,
observables, are gauge invariant.

The Hamiltonian for an optical electron in an external
electromagnetic field may be written as

H = 1
2 (p − A/c)2 + VC + φ, (3)

where VC is the core potential seen by the electron.
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In our current discussion, we treat the electromagnetic field
as a plane wave propagating along the z direction, and describe
the electric field as F = F0 ε̂ei(kz−ωt) + c.c., where ε̂ is the
polarization vector. In the velocity gauge (also known as the
transverse or Coulomb gauge),

AVG = −i
F0c

ω
ε̂ ei(kz−ωt) + c.c., φLG = 0. (4)

The length and the velocity gauges are related through the
transformation function χ = −r · AVG, leading to potentials in
the length gauge [10]:

ALG = −F0 k̂ (ε̂ · r) ei(kz−ωt) + c.c.,
(5)

φLG = −F0 (ε̂ · r) ei(kz−ωt) + c.c..

III. STARK SHIFTS AND POLARIZABILITIES IN THE
NONRELATIVISTIC APPROXIMATION

A. Velocity gauge

In the velocity gauge (4), the Hamiltonian becomes

H = p2

2
+ VC − AVG · p

c
+ A2

VG

2c2
. (6)

We calculate the energy shifts within the Floquet formalism
of quasienergy states [11] for the third term, and use the
first-order perturbation theory for the fourth term since it is
already second order in the field strength. The energy shift for
a Rydberg state |r〉, therefore, becomes

δEVG(ω) = 1

4c2

∑
j

2	Ej

	E2
j − ω2

|〈r|AVG · p|j 〉|2

+〈r|A2
VG|r〉/(2c2).

The first term can be decomposed into the scalar, vector,
and tensor contributions. We focus on the dominant scalar
contribution to the Stark shift and arrive at

δEVG(ω) = F 2
0

4ω2
+ F 2

0

4ω2

∑
j

2	E3
j

	E2
j − ω2

1

3
|〈r|D|j 〉|2, (7)

where Er − Ej = 	Ej , and we used

〈r|ε̂ · p|j 〉 = −i 	Ej ε̂ 〈r|D|j 〉. (8)

Here D is the usual dipole operator. The summation over the
magnetic quantum number can be evaluated explicitly using
the Wigner-Eckart theorem:

∑
λ,Mj

(−1)λ〈r|Dλ|j 〉〈j |D−λ|r〉 = 1

2lr + 1

∑
nj ,lj

|〈r||D||j 〉|2,

where 〈r||D||j 〉 are the reduced dipole matrix elements.
The first term in Eq. (7) can be immediately identified as

the ponderomotive energy shift for a free electron quivering
in an electromagnetic field. Notice that it came directly from
the A2

VG term in the Hamiltonian (6), and it is the dominant
term for a Rydberg state. By contrast, the second term in (7)
is the correction to the free-electron ponderomotive shift. All
of the resonance structure is included in the second correction
term, whereas the free-electron shift only provides a smooth
background on which the resonance structure sits.

We can express δEVG in terms of the conventional ac polar-
izability through its definition for the plane waves, δE(ω) =
−α(ω)F 2

0 /4. Then the ac polarizability in the velocity gauge
becomes

αVG(ω) = αe(ω) − 2

3ω2

∑
j

	E3
j

	E2
j − ω2

|〈r|D|j 〉|2. (9)

Here αe(ω) = −1/ω2 is the free-electron polarizability.

B. Length gauge

We now derive Eq. (9) in the length gauge, and thereby
establish the gauge invariance. Using the length gauge vector
and scalar potentials (5), the Hamiltonian can be expressed as

H = p2

2
+ VC − ALG · p

c
+ A2

LG

2c2
+ φLG. (10)

To calculate the energy shifts resulting from the last three terms
in the Hamiltonian, we again use the quasienergy formalism
[11] for the third and the fifth terms, and the first-order
perturbation theory for the fourth term:

δELG(ω) = F 2
0

4

∑
j

2	Ej/3

	E2
j − ω2

|〈r|ALG · p/c + φLG|j 〉|2

+ F 2
0

2c2
〈r|A2

LG|r〉. (11)

Upon expanding the square, we encounter three contributions
to the first term. Out of the three, the dominant one is the
|〈r|φLG|j 〉|2 term. The term involving |〈r|ALG · p|j 〉|2, and the
last term involving A2

LG are suppressed by a factor of 1/c2 ∼
10−4 and can be safely ignored in the nonrelativistic approx-
imation. The cross term between the ALG · p and φLG drops
out because it is proportional to Re[〈r|ALG · p|j 〉〈j |(φLG)†|r〉]2

which vanishes on the account of 〈r|ALG · p|j 〉 being purely
imaginary (due to 〈r|ε̂ · p|j 〉 = −i	Ej ε̂ 〈r|D|j 〉). We again
focus on the dominant scalar contribution to the Stark shift,
which leaves us with

δELG(ω) = F 2
0

2

1

3

∑
j

	Ej

	E2
j − ω2

|〈r|D|j 〉|2. (12)

Through the definition δE(ω) = −α(ω)F 2
0 /4, the polarizabil-

ity in the length gauge can be written as

αLG(ω) = −2

3

∑
j

	Ej

	E2
j − ω2

|〈r|D|j 〉|2. (13)

To reveal how this expression relates to αe(ω) and the
polarizability in the velocity gauge, we expand the resolvent
operator in Eq. (13) in powers of 	Ej/ω :

	Ej

	E2
j − ω2

= 	Ej

ω2

(
− 1 − 	E2

j

ω2
− 	E4

j

ω4
− · · ·

)
. (14)
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This results in a series expansion of the polarizability in the
length gauge:

αLG(ω) = 2

3ω2

∑
j

	Ej |〈r|D|j 〉|2

+ 2

3ω4

∑
j

	E3
j |〈r|D|j 〉|2

+ 2

3ω6

∑
j

	E5
j |〈r|D|j 〉|2 + · · · .

This series can be resummed such that the first term is separated
out:

αLG(ω) = 2

3ω2

∑
j

	Ej |〈r|D|j 〉|2

+ 2

3ω2

∑
k

⎛
⎝∑

j

	E3+2k
j

ω2+2k
|〈r|D|j 〉|2

⎞
⎠ . (15)

With the help of the oscillator sum rule,

−2

3

∑
j

	Ej |〈r|D|j 〉|2 = 1, (16)

we recover the free-electron polarizability from the first term
in (15) when summed over a complete set of states [note
that 	Ej = −(Ej − Er )]. On the other hand, with the aid
of the expansion (14), the outer sum in the second term can
be collapsed back into the same correction term to the free
electron polarizability in the velocity gauge (9). Thus

αLG(ω) = αe(ω) + 2

3ω2

∑
j

	E3
j

	E2
j − ω2

|〈r|D|j 〉|2, (17)

and αLG(ω) ≡ αVG(ω). This expression for the length gauge
polarizability is identical to the one in Eq. (9) in the velocity
gauge, confirming the equivalence of the ac Stark shifts in both
gauges, i.e., the gauge invariance. These expressions also show
how the free-electron term originates, and we will demonstrate
below that the correction to αe(ω) is indeed very small for
Rydberg states.

In Ref. [12], the emergence of the free-electron polariz-
ability in the length gauge has been shown numerically for
Rydberg states of the Rb atom. Reference [13] has provided
an alternative analytical expression using higher rank oscillator
sum rules. However, we find that the formula of Ref. [13] has
poor convergence properties when evaluated numerically.

IV. DIRAC SEA

So far we examined the ac Stark effect in the nonrelativistic
formalism. In the velocity gauge the dominant contribution
came from the expectation value of the vector-potential-
squared term A2

VG. Curiously, the fully relativistic Dirac
Hamiltonian involves only linear couplings to electromagnetic
fields, thereby such term is missing in the lowest order
of perturbation theory. This naturally raises a question of
just how the free-electron polarizability emerges from the
relativistic equations. As we show in this section, it comes
from summations over the negative energy (positron, En <

−mec
2) states, i.e., from the Dirac sea. Similarly pronounced

effects of the Dirac sea on weak atomic transition ampli-
tudes were found earlier [14,15] in relativistic many-body
calculations.

We start with the coupling to electromagnetic fields:

V = α · A(r,t) − φ(r,t), (18)

where α are the conventional Dirac matrices. In the velocity
gauge φVG(r,t) = 0, so that

V = α · AVG(r,t). (19)

Applying the second-order Floquet formalism, we arrive at the
fully relativistic ac polarizability

αVG,Dirac(ω) = −2c2

ω2

∑
j

(Er − Ej )

(Er − Ej )2 − ω2

× |〈ψr |α · ε̂ |ψj 〉|2. (20)

The summation over intermediate states in the above
equation spans the complete spectrum of the Dirac equation,
i.e., both positive and negative energy states. It can be
shown using the Pauli approximation that the sum over the
conventional positive energy states recovers the second term
(second-order sum) in the nonrelativistic expression for the
ac polarizability. Now we demonstrate that the dominant,
free-electron polarizability term emerges from summing over
the negative energy states. In this case, the Rydberg electron
energy Er is above the Dirac sea level and (Er − Ej ) ≈ 2mec

2

and (Er − Ej ) 	 ω (we naturally assume that the photon
energy is well below 2mec

2). Within this approximation, the
dynamic ac polarizability becomes

α
(−)
VG,Dirac(ω) = − 2c2

ω2(2mec2)

×
∑

Ej <−mec2

〈ψr |α · ε̂ |ψj 〉〈ψj |α · ε̂ |ψr〉. (21)

The Dirac matrices α mix the large and the small com-
ponents of the Dirac bispinor, ψ = ( ψl

ψs ). Part of the sum-
mation on the right hand side of (21) can, therefore, be
written as

∑
Ej <−mec2

〈
ψl

r

∣∣σ · ε̂
∣∣ψs

j

〉〈
ψs

j

∣∣σ · ε̂ ∣∣ψl
r

〉
. (22)

In the nonrelativistic approximation, the negative energy states
are complete amongst themselves, i.e.,

∑
b |ψs

b〉〈ψs
b | ≈ 1,

leading to

α
(−)
VG,Dirac(ω) = − 1

ω2

〈
ψl

a

∣∣σ · ε̂
∣∣ψl

a

〉 = − 1

ω2
, (23)

where we used (σ · ε̂)2 = 1 and me = 1 a.u.. Therefore
we recover the free-electron polarizability in atomic units.
Is it not interesting that describing the purely classical
effect of electron quiver motion requires the notion of
antimatter?
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V. CORRECTION TO THE FREE-ELECTRON
POLARIZABILITY

In all our calculations below, we use the single active
electron approximation, and represent the atomic core with
the model potential using the correct quantum defects for Rb
and Sr atoms from [16]

VC = −1 + 2e−α1r + rα2e
−α3r

r

− αs

2r4
[1 − exp(−r3)]2, (24)

where α1, α2, and α3 are l-dependent screening parameters,
and αs is the static polarizability of the core [17]. For
illustrative purposes, we pick Rb and Sr atoms because they
have very different core polarizabilities. For Rb, the static core
polarizability is ∼9 a.u., whereas the polarizability for the
Sr+ ion with a 5s valence electron serving as the spectator is
∼91 a.u., an order of magnitude larger. This results in large
differences in quantum defects δl for the s Rydberg states:
for example, in the 100s state of Rb δ0 
 3.28 and for Sr
δ0 
 5.02. In our calculations, we assume that the Sr atom is
in a J = 0 state, and we ignore contributions from the resonant
structure from the 5s valence electron.

In order to evaluate polarizabilities in both the length and
the velocity gauges, we have to evaluate sums over a complete
set of states in (9) and (13). We check the completeness of our
basis using the well known oscillator sum rule. We find

−2

3

∑
j

	Ej |〈r|D|j 〉|2 = 0.967 (Rb), (25)

−2

3

∑
j

	Ej |〈r|D|j 〉|2 = 0.989 (Sr), (26)

while summing over p states with n = 2 through 200 for the
100s states of the Rb and Sr atoms.

We have shown that the Rydberg state polarizabilities in
the length (17) and velocity gauges (9) are identical as a result
of the gauge invariance, i.e., αLG(ω) ≡ αVG(ω). Furthermore,
we have expressed these exact polarizabilities as a sum of the
free-electron polarizability αe(ω) and an exact correction. The
resonance structure of the polarizabilities is entirely captured
by this correction term, whereas αe(ω) only provides a smooth
background. The fractional corrections for various Rydberg s

states of Rb and Sr are shown in Fig. 1 in the IR region of the
spectrum. The resonant structure is evident in the plots, and
the widths of the resonances increase with increasing principal
quantum number. Also, the sizes of the corrections grow
smaller as n is increased meaning that the near-free-electron
approximation to the Rydberg electron polarizability gradually
becomes more accurate away from the resonances. With the
exception of the 10s state, the corrections are well below a
percent for both Rb and Sr, except at the resonances.

Comparing the upper and lower panels of Fig. 1, we observe
that the errors made by approximating αLG(ω) and αVG(ω)
by αe(ω) are larger for Sr than for Rb. This stems from the
larger static polarizability of the Sr+ ion with a 5s valence
electron compared to the Rb+ ionic core, a property which is
contained in the model potential (24). Although the static core
polarizabilities for these atoms differ by an order of magnitude,
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FIG. 1. (Color online) The fractional corrections to the free-
electron polarizability for the 60s, 20s, and 10s states of Rb and
the 5s60s, 5s20s, and 5s10s states of Sr atoms in the IR region of the
spectrum. The resonance structure is entirely contained within these
corrections, and the resonances become wider for higher ns states.
The ω axis spans wavelengths between ∼2300 and ∼760 nm. These
polarizabilities were computed in the nonrelativistic approximation
so that the fine structure is not resolved.

the corrections to αe(ω) are still much less than a percent in
both cases, except in the immediate vicinity of resonances.

Another feature seen in Fig. 1 is that the widths of
the resonances decrease with increasing principal quantum
number. For example, for Rb the width of the 20s-6p resonance
is significantly larger than that of the 60s-6p resonance. On
the other hand, the 10s-6p resonance is so large that the
correction to αe(ω) for the 10s state of Rb is at least a couple
of percent nearly for all frequencies spanned in Fig. 1. Similar
observations can also be made for Sr. The widening of these
resonances with increasing n can be qualitatively understood
if one realizes that the widths of the resonances in Eqs. (9) and
(17) are controlled by the square of the dipole matrix elements,
which scales as |〈r|D|j 〉|2 ∼ 1/n3.

Reference [9] found strong intensity landscape modulations
of the effective polarizability for Rydberg atoms trapped in IR
lattices. Because of the low frequency of the trapping field, the
Rydberg electron polarizability can potentially deviate quite
substantially from the free-electron value. This is because at
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sufficiently low frequencies the polarizability must approach
its static limit, whereas the free-electron value diverges. In this
paper, we have shown that the free-electron approximation
holds, even at IR wavelengths of thousands of nm.
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