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We study the effect of resonances associated with complex molecular interaction of Rydberg atoms on Rydberg
blockade. We show that densely spaced molecular potentials between doubly excited atomic pairs become
unavoidably resonant with the optical excitation at short interatomic separations. Such molecular resonances limit
the coherent control of individual excitations in Rydberg blockade. As an illustration, we compute the molecular
interaction potentials of Rb atoms near the 100s states asymptote to characterize such detrimental molecular
resonances and determine the resonant loss rate to molecules and inhomogeneous light shifts. Techniques to
avoid the undesired effect of molecular resonances are discussed.
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I. INTRODUCTION

Rydberg blockade [1–4] has recently emerged as a promis-
ing method for creating and manipulating quantum states of
light and matter in applications ranging from quantum infor-
mation processing [5–7] to quantum nonlinear optics [8,9].
The key idea is that strong interaction between Rydberg atoms
can be used, under certain conditions, to block the states with
more than one excited atoms. Multiple Rydberg excitations
are suppressed due to level shifts caused by strong long-
range interactions between Rydberg atoms. This mechanism
enables performing quantum logic operations between atom
pairs and manipulate collective many-body states of an N -
atom ensemble [1]. Such collective states efficiently couple
to laser fields with the coupling enhanced by a factor of√

N ; see experiments [10,11]. While a number of advanced
protocols involving Rydberg blockade are being explored, an
outstanding challenge is to identify and realize conditions
for high-fidelity atomic and optical state control via Rydberg
blockade.

Here we investigate the effect of molecular resonance
on quantum state manipulation via Rydberg blockade. We
demonstrate that the very same interactions that cause the level
shifts required for blockade also have detrimental effects due
to a large state density (number of levels per energy interval) of
Rydberg states resulting in a plethora of closely spaced
molecular potentials. Some of these potentials may become,
at specific interatomic separation, resonant with the driving
field causing excitations to unwanted doubly excited Ryd-
berg states. While this mechanism was qualitatively pointed
out [12,13], detailed understanding of effects of molecular res-
onances on collective state manipulation is important for high
fidelity quantum states control. This is challenging partially
due to the overwhelming complexity of molecular potentials
especially at small internuclear separations [12]. Below we
demonstrate that the cumulative effect on the Rydberg block-
ade is caused by molecular resonances at large interatomic
distances where reliable theoretical predictions can be made.
We derive and compute the rates of resonant conversions to
diatoms, show that collective qubit rotations are damped, and
compute the “leakage” and inhomogeneous frequency shifts

due to diatom conversion. Finally, we discuss techniques to
suppress the deleterious molecular resonance effects.

II. MOLECULAR RESONANCES

We start by computing molecular potentials for two in-
teracting Rb Rydberg atoms by a direct diagonalization of
the long-range dipole-dipole molecular Hamiltonian. On a
large energy scale, we find a “spaghetti” of densely packed
curves exhibiting intricate avoided crossing patterns. The
region that is relevant to our discussion is centered around
the nominally blockaded Rydberg levels. As an illustration,
we take |r〉 = |100s〉. Considering that the typical excitation
Rabi frequency �0 is ∼1 MHz we zoom onto a 1 GHz window
(Fig. 1) centered about the 100s + 100s dissociation limit. In
this figure the potential that at large R asymptotes to two 100s

atoms is the blockading van der Waals interaction. However,
we also find several potential curves that at short R cross zero
energy corresponding to a resonance with the laser field. As
a result, atoms can be promoted into an undesired molecular
state corresponding to two Rydberg atoms. Properties of these
resonant crossings are compiled in Table I. The outermost
crossing with the most substantial laser coupling is at R× ≈
6.2 μm. Since this value is larger than the average interatomic
separation for typical experimental number densities [10]
ρd ≈ 1011−1012 cm−3, one may find a fraction of atomic pairs
inside the volume-enclosing molecular resonance region.

Note that the potential curves were computed in the
basis of atomic orbitals with orbital angular momenta up
to �max = 2. Increasing �max and adding atomic orbitals to
the computational basis breed new resonant crossings, as the
system becomes increasingly chaotic at smaller R due to
stronger interchannel couplings and thus larger number of
avoided crossings. Even our outermost resonance can be
superseded by crossings at larger R, but with suppressed
laser couplings. However, the parameters of the outermost
crossing in Fig. 1 are stable with respect to the basis
variation. As we demonstrate below this outermost crossing
predominantly affects the dynamics of collective excitations
thereby mitigating challenges of reliably computing full-scale
Ry-Ry interaction potentials.
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FIG. 1. (Color online) Selected �g molecular potentials in the
1 GHz window centered about the 100s + 100s dissociation limit
(placed at zero energy) for two Rb atoms. The potentials are
marked by their double-atom dissociation limits at large internuclear
separations R. Highlighted blockading interaction is the interaction
that tunes a pair of 100s Ry atoms away from the resonance with
driving laser field. The position R× of the outermost resonant
molecular potential crossing is marked with a circle. Properties of
molecular resonances are compiled in Table I.

Despite the complexity of molecular potentials, the position
R× of the outermost resonance can be estimated as follows.
Suppose the ns + ns state is our |rr〉 “blockaded” state. The
nearest-energy n′s + n′′s state with n′ ≈ n′′ ≈ n is the (n −
1)s + (n + 1)s state, and at large R it lies below the resonance
by δm ≈ −3n−4. Further, the molecular potential correlating
to the (n − 1)s + (n + 1)s atoms behaves as n4c̃3/R

3 due
to the repulsion from the p + p state below, where c̃3 ∼ 1.
Thereby, U (R) ≈ −3n−4 + n4c̃3/R

3, and from U (R×) = 0
we arrive at R× ≈ (3−1c̃3 n8)1/3. For n = 100 this estimate
with c̃3 = 1 leads to R× ≈ 8 μm in a reasonable agreement
with our computed value. Further, we evaluated molecular
Rabi frequencies �m = ξm�0 (typically a fraction ξm of �0;
see Table I). For the outermost resonance, such couplings
originate from admixtures of the 100s + ns states through the

TABLE I. Molecular resonance shell properties for the Rb 100s

blockaded state (see Fig. 1). R× and �R× are the shell radii and
widths, ξm are the fractional molecular Rabi frequencies, ξm =
�m/�0, and γm are molecular loss rates. �R× and γm are evaluated
for atomic Rabi frequency �0 = (2π ) × 0.1 MHz and number density
ρd = 1012 cm−3. Positions and the number of resonances for smaller
R are computational-basis dependent; however, their contribution to
the total rate is strongly suppressed.

R×,μm ξm �R×,μm γm,s−1

6.22 0.55 3.8 × 10−4 1.0 × 105

5.67 0.091 3.5 × 10−5 1.3 × 103

4.61 0.012 2. × 10−6 6.2 × 100

4.39 0.44 8.6 × 10−5 9.1 × 103

4.13 0.13 1.7 × 10−5 4.6 × 102

3.33 0.16 9.3 × 10−6 2.0 × 102

2.45 0.011 1.2 × 10−6 9.8 × 10−1

1.99 0.0017 6.4 × 10−8 5.4 × 10−3

· · ·

FIG. 2. (Color online) A laser pulse nominally resonant with
the r − g transition can resonantly excite molecular states. The
molecular wave packet is efficiently excited within a window �R×
determined by the slope of molecular potential U (R) and molecular
Rabi frequency �m. Once excited the wave packet rapidly accelerates
out of resonance and rolls down the slope of molecular potential.

off-diagonal van der Waals interaction. We evaluated ξm from
the eigenvectors of the numerically diagonalized molecular
Hamiltonian.

The atoms are efficiently laser-coupled to the molecular
resonances only in a small window of R, when the detuning
U (R) is comparable to �m (see Fig. 2). Thereby we define an
effective radial width of the molecular resonance

�R× = �m(R×)/|U ′(R×)|, (1)

where �m and the derivative of the molecular po-
tential U ′(R×) = dU (R×)/dR are evaluated at the res-
onance crossing. For the outermost resonance �R× ≈
�0ξmn20/3(c̃3/3)1/3/9. Each molecular resonance therefore
defines a “resonance shell,” a spherical shell of radius R×
and radial width �R× centered at a given atom. The average
number of atoms inside the resonance shell,

�N× = 4πR2
×�R×ρd, (2)

is a relatively small number in a typical experiment. For
parameters of Table I, the outermost resonance shell contains
fewer than ∼0.1 atoms.

III. ATOM LOSS

The presence of molecular resonances implies several
consequences for the Rydberg blockade, the most important
being the atomic loss. Indeed, inside the shell two excited
Rydberg atoms are subject to a mechanical force −U ′(R×).
This force can be either attractive or repulsive. (An example
of the repulsive resonance is at R× ≈ 6.2 μm; see Fig. 2.) The
diatom would separate into two 99s and 101s Ry atoms with a
kinetic energy of relative motion equal to the dissociation limit
δm ≈ −3n−4, which is ∼10 mK for n = 100. These atoms may
escape the trapping volume, effectively reducing the number
of blockaded atoms. Since the atoms are accelerated out of the
resonance shell on time scales τa = √

�R×Ma/|U ′(R×)| �
1/�0, we adopt a simple model that once a pair of atoms is
promoted to a molecule, the associated motional wave packet
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quickly leaves the resonance shell with its atomic constituents
no longer interacting with the laser field.

The attractive potentials (see crossing at R× ≈ 4.6 μm in
Fig. 1) can lead to auto-ionization in the small R region [14].
Such a process would free an electron and a molecular ion, with
their Coulomb fields blockading the entire sample. While in
our illustrative example laser coupling to attractive potentials
is negligible, it may be not be the case in general. Qualitatively,
to reduce autoionization one needs to pick Rydberg states such
that the potentials inside the most strongly coupled resonance
shells are repulsive.

A. Dynamics of collective excitation

Now we analyze the dynamics of collective atomic en-
semble excitations. We will derive the expressions for the
damping (loss) rate in two approximations: (i) assuming that
atoms are frozen in space (static limit) and (ii) collisional
model (impact limit). Remarkably both approximations yield
identical loss rate. We consider an ensemble of N atoms
initially in the collective ground state |G〉 = |g1g2 · · · gN 〉. A
laser pulse couples |G〉 to a superposition of singly excited
Rydberg atoms |Ri〉 = |g1 · · · gi−1rigi+1 · · · gN 〉. These atoms
can be further promoted to doubly Ry-excited diatom states
|Mij 〉, involving atoms i and j . There are Nm = N (N − 1)/2
diatom states, with their resonance detunings �(Rij ) = U (Rij )
and Rabi frequencies �

ij
m(Rij ) determined by their interatomic

separations Rij . Expanding the total wave function in this basis
(ω0 is the laser frequency resonant with the g-r transition),

|〉 = cge
iω0t |G〉 +

N∑
i

ci |Ri〉 + e−iω0t

N∑
i

N∑
j>i

mij |Mij 〉,

and applying the rotating-wave approximation, we arrive at

iċg = 1

2
�0

N∑
i

ci ,

iċi = 1

2
�0cg + 1

2

⎛
⎝ i−1∑

j=1

�ij
mmji +

N∑
j=i+1

�ij
mmij

⎞
⎠,

iṁij = �ijmij + 1

2
�ij

m(ci + cj ).

When all molecular detunings �ij are large, the system
undergoes the ideal Rabi flopping between the collec-
tive ground state and symmetric combination of single
Rydberg excitations [cI

g(t) = cos(
√

N�0t/2) and cI
i (t) =

−i sin(
√

N�0t/2)/
√

N ]. We focus on the averaged collective
dynamics and introduce the collective amplitude cs so that
ci(t) ≡ cs(t)/

√
N . We assume that all �

ij
m = �m owing to the

weak Rij dependence inside the resonance shell. The collective
amplitudes satisfy (�N

0 = √
N�0)

iċg = �N
0

2
cs,

iċs = �N
0

2
cg + �m

2
√

N

N∑
i

⎛
⎝ i−1∑

j=1

mji +
N∑

j=i+1

mij

⎞
⎠, (3)

iṁij = �ij (Rij )mij + (�m/
√

N )cs.

B. Loss rate

Now we fix the positions of all atoms (this requirement
is relaxed later) and split the time axis into time intervals
consisting of a short laser pulse of duration τp � 1/�N

0
and field-free acceleration time τa during which the excited
diatom wave packet leaves the shell. Because of the me-
chanical forces the molecular amplitudes inside the shell are
reset to zero values before the next pulse arrives (this is
reminiscent of the Markov approximation [15]). By taking
the limit τa → 0 we arrive at a continuous Rabi drive.
Integrating the last equation over time interval (t,t + τp),
one obtains, mij (t + τp) = cs(t)(�m/

√
N ){exp(i�ij τp) −

1}/�ij . We have set mij (t) = 0 as discussed. Notice
that the r.h.s. spikes at �ij = 0, i.e., within the res-
onance shell. Ensemble averaging yields 〈mij (t + δt)〉 =
−ics(t)π (�m/

√
N )(4πR2

×)/[|U ′(R×)|Vs], where Vs is the
blockaded ensemble volume. By substituting this relation into
the equation for cs we arrive at a set of damped equations
(non-Hermitian Schrodinger equation):

iċg = �N
0

2
cs,

(4)

iċs = �N
0

2
cg − iγmcs

with the molecular-resonance (amplitude) loss rate

γm = π�N×�m/2 = 2π2ρdξ
2
mR2

×�2
0/|U ′(R×)|. (5)

For the outermost resonance, γm ≈ 2π2ρdξ
2
m�2

0c̃3 n12/27. The
above derivation neglected atomic motion and is valid for very
cold ensembles. In Appendix A, we take into account the
thermal motion of the atoms, using the impact approximation.
We find the result for γm that is identical to Eq. (5).

The rate formula is to be summed over all resonance shells:
γ tot

m = ∑
k γ k

m, where γ k
m is the individual shell contribution (5).

For our example in Table I, γ tot
m is entirely dominated by the

outermost crossing. The reason for this prominence is that at
smaller R, the potentials become steeper and the molecular
Rabi frequencies become diluted, thereby leading to smaller
values of �R× [see Eq. (1) and Table I] and together with
smaller values of R× leading to smaller values of �N× and
thereby γm. Notice that the long-range molecular Hamiltonian
used in computing the molecular potential curves in Fig. 1
holds only for R � 2n2a0 ∼ 1 μm for n = 100, i.e., when
the electronic densities do not overlap. However, all the
qualitative arguments that the molecular excitation rates should
be suppressed compared to the outermost resonance shell still
hold even for small R.

The rate scales steeply with n,γm ∝ n12. In particular,
it is commonly believed that the blockade fidelity can be
improved by going to high-n Ry states, because the probability
of off-resonant Ry excitations is suppressed as n−22 in the
van der Waals blockade. We see that increasing n while
suppressing off-resonant Ry excitations also increases the
undesired molecular loss rates.

In addition to the loss, the same � drive induces an AC
Stark shift which is different for states in which different
atoms are excited. This inhomogeneous broadening results
in an additional loss of coherence of the Rabi oscillation. In
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Appendix B, we show that this broadening is given by

δ� ≈ (7π/2)ρdξ
2
mR2

×�2
0/|U ′(R×)| (6)

in the limit where R× is much smaller than the size of the
ensemble. Although the dependence of the system parameters
is the same as for γm in Eq. (5), the prefactor makes δ�

roughly two times smaller than γm. During the Rabi dynamics,
the broadening makes the signal decay as exp[−(δ� t)2] over
time, and hence the molecular loss is dominant as long as
γmt < 1.

C. Damped Rabi oscillations

Equations (4) reduce to the damped oscillator equation of
motion c̈s + (�N

0 /2)2cs − γmcs = 0 with solutions

cs(t) = −i
(
�N

0 /�d

)
sin(�dt/2)e− γm

2 t , (7)

cg(t) = [cos(�dt/2) + (γm/�d ) sin(�dt/2)]e− γm
2 t , (8)

where �d = �N
0 (1 − η2)1/2, η = γm/�N

0 . The driven en-
semble exhibits damped collective Rabi oscillations with a
frequency �d � �N

0 . One may distinguish between three
classes of solutions [16]: underdamped (η < 1), critical (η =
0), and overdamped (η > 1). Explicitly,

η = 2π2

√
N

Vs |U ′(R×)|ξ
2
mR2

×�0 ∝ n12
√

N�0.

Thereby increasing �0,n, or ρd can cause the ensemble to
exhibit overdamping of collective Rabi oscillations, at which
point they no longer resemble oscillations. In the underdamped
regime, the loss per collective Rabi cycle determines collective
qubit operation fidelity F = (�N

0 /�d )2e−2πη.
The molecular loss can account for some experimentally

observed imperfections. For example, Dudin et al. [10] have
effectively measured the damping constant for collective Rabi
oscillations in a mesoscopic ensemble of 102s Rb atoms. They
found that the Rabi oscillation loses 10%–20% of its contrast
in a single cycle. Our calculation can account for a loss of
∼5% during a single oscillation cycle. While the agreement
seems to be adequate, we emphasize that it may be fortuitous
as the experiment has been carried out in the presence of
magnetic field which was excluded in our analysis and would
introduce additional resonances. We also neglected the s-d
excitation channels (allowed in the excitation scheme [10])
when computing molecular Rabi frequencies. Moreover, the
experiment [10] (and similar experiments [5,11,17,18]) are
affected by a multitude of other decoherence effects. At
this point it may be desirable to design experiments that
could disentangle various decoherence mechanisms, and the
molecular losses in particular.

D. Effective atom number

While the total number of atoms N remains con-
stant during the coherent evolution, the wave function ac-
quires outcoupled diatom wave packets. If the measure-
ment of the total number of atoms were to be made,
the number of atoms remaining in the ensemble would
be Neff(t) = N (|cg(t)|2 + |cs(t)|2). By manipulating Eq. (4),
one finds that Ṅeff = −2γm|cs(t)|2N , resulting in Neff(t) =

N{1 + 2( γm

�d
)2 sin2(�dt

2 ) + ( γm

�d
) sin(�dt)}e−γmt , or averaging

over many cycles N̄eff(t) = N [1 + (γm/�d )2]e−γmt , i.e., the
effective number of atoms remaining in the ensemble de-
cays exponentially. The quantity 1 − (|cg|2 + |cs |2) = [N −
Neff(t)]/N ∼ (γm/�d )2e−γmt also determines “leakage” from
the collective qubit space. Clearly, to minimize the leakage one
has to require that γmt � 1 or γm � �0

√
N . For parameters

of Table I, the coherent evolution is limited to t � 10 μs.
One may visualize the “leakage” from the collective qubit

space as a modulated outflow of molecular wave packets
from the blockaded volume. As an illustration, the outermost
molecular resonance produces admixtures of 101s and 99s

Rydberg atoms. If the ensemble is trapped, the outcoupled
(di)atoms may linger inside the ensemble depending on the
released kinetic energy and the trapping potential height. Such
atoms do not resonantly interact with the laser field of the
Rabi drive. However, they do interact with the remaining
ensemble leading to energy shifts through the interactions
with the remaining atoms. Such mechanisms can be also
relevant for untrapped ensembles, where the outflowing diatom
wave packets may interact with the remaining ensemble while
transiting out through the volume. In addition, the present
discussion focused on Rydberg S states, the undesired effects
can be enhanced for Rydberg states with higher angular
momentum. This is due to the presence of closely spaced
states, due to, e.g., spin-orbit interaction, that can result in
molecular crossing at larger R.

IV. SUPPRESSION WITH LATTICE

The unwanted effect of molecular resonances can be
suppressed by using tight traps for individual atoms prior to
excitation, such as optical lattices. The idea is positioning
atoms such that excitation to molecular resonances is not
allowed. As shown in Appendix C, the loss can be suppressed
by a factor of ∼100, if the tightly trapped (∼20 nm) individual
atoms are prepared in a 3D optical lattice with the lattice
constant tuned to avoid the resonances. By choosing the
lattice constant, the outermost resonant shell R× = 6.2 μm
can fall in a gap between density peaks, largely reducing its
effect. High-fidelity manipulation of Rydberg atoms in a lattice
has been observed recently [19]. Similar arguments apply to
spatially separated optical traps: the distance between the traps
should be larger than the radius of the outermost resonance
shell.

To summarize, in this paper we investigated how molecular
resonances limit the fidelity of Rydberg excitations in an
atomic cloud. Under continuous driving pairs of atoms can
be promoted into a doubly excited Rydberg states, if they
are separated by certain resonant distances. These resonant
pairs repel each other and leave the cloud. To mitigate this
detrimental effect, trapping the atoms in a tight optical lattice
can be used, where they are kept away from resonance.
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APPENDIX A: DERIVATION OF THE MOLECULAR
EXCITATION RATE IN THE IMPACT APPROXIMATION

As discussed in the main text, the collisions leading
to strong coupling to molecular states are short and well
separated. Let us consider one of such collisions of atom i

with an atom j. The molecular probability amplitude satisfies
the equation

iṁij = �ijmij + 1
2�ij

m(ci + cj ). (A1)

The detunings �ij [molecular potentials with the zero energy
at the |r〉 + |r〉 dissociation limit, �ij = U (Rij (t))] and Rabi
frequencies are time dependent because of the atomic motion.
Introducing

mij (t) = m̃ij (t) exp

[
−i

∫ t

−∞
�ij (t ′)dt ′

]
,

we recast Eq. (A1) into

i
d

dt
m̃ij (t) = 1

2
�ij

m(ci + cj ) exp

[
i

∫ t

−∞
�ij (t ′)dt ′

]
(A2)

We are interested in the probability of molecular excitation
due to a single collision,

Pm = |mij (∞)|2 = |m̃ij (∞)|2.
Integrating Eq. (A2), we arrive at

m̃ij (∞) = −i

∫ ∞

−∞

1

2
�ij

m(t)[ci(t) + cj (t)]

× exp

{
i

∫ t

−∞
U [Rij (t ′)]dt ′

}
dt. (A3)

To evaluate this probability we approximate Rij (t) with
straight-line trajectories,

Rij (t) = {[v(t − tc)]2 + ρ2}1/2.

Here ρ is the conventional impact parameter, v is the relative
atomic velocity, and tc is the time of the closest approach. The
atoms reach the resonance region when Rij (t) = R×. Clearly
one has to require that ρ � R× for this to occur. The associated
moment of time t× is

v(t±× − tc) = ±
√

R2× − ρ2.

The exponential in the integral (A3) rapidly oscillates except
when the phase

∫ t

−∞ U (Rij (t ′))dt ′ is stationary. The prefactor
varies slowly in time compared to the exponent. This forms the
basis for evaluating (A3) using the stationary-phase method.
Let us review the basics of this method. Consider an integral

I =
∫ +∞

−∞
g(t)eiφ(t) dt,

where g(t) varies slowly compared to the rapidly oscillating
exponent. The main value of the integral is accumulated in the
regions where the phase is stationary, i.e.,

dφ(t∗)/dt = 0.

Expanding the phase in the vicinity of the t∗:

φ(t) ≈ φ(t∗) + 1
2φ′′(t∗)(t − t∗)2.

Then

I ≈ g(t∗)eiφ(t∗)
∫ +∞

−∞
exp

[
i
1

2
φ′′(t∗)(t − t∗)2

]
dt

= g(t∗)eiφ(t∗) exp

{
i
π

4
sgn[φ′′(t∗)]

}√
2π

|φ′′(t∗)| .

In our case φ(t) = ∫ t

−∞ U (Rij (t ′))dt ′, and the stationary points
correspond to the crossing of the resonance shell

dφ(t∗)/dt = U [Rij (t∗)] = 0,

i.e., t∗ = t×. Notice that we have two stationary points
corresponding to two crossings of the resonance shell. The
two times are separated by

t+× − t−× =
2
√

R2× − ρ2

v
.

In general, both points can contribute. However, once pro-
moted to the molecular state, the atoms experience strong
mechanical forces and are accelerated out of the resonance.
Therefore we will neglect the interference effects when
computing the probability Pm and add the two contributions
incoherently (this provides the upper limit on Pm):

Pm = π�2
m|ci(t×) + cj (t×)|2

[
1

|φ′′(t×)|
]
.

Further we evaluate the second derivative of the phase
evaluated at crossing points:

d2φ(t×)/dt2 = dU

dRij

dRij

dt
= �m

�R×

v

R×
v(t× − tc)

= �m

�R×

v

R×

√
R2× − ρ2.

From here one could define the effective duration of collision

τc ≈
√

�R×
v

1

�m

or

Pm = π |ci(t×) + cj (t×)|2�m

�R×
v

R×√
R2× − ρ2

.

We further approximate the time evolution of single Ry
excitations via their uncoupled time evolution, cI

k (t) =
i/

√
N sin[

√
N�0t/2)]:

Pm(ρ,t) = 4π

N
�m

�R×
v

R×√
R2× − ρ2

sin2[
√

N�0t/2)].

Pm = 0 for ρ > R× as there are no crossing through the
resonance region for such impact parameters.
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The number of atoms lost due to a single collision is
�N = −2Pm. Now we sum the probabilities over multiple
collisions. The number of atoms in a relative velocity group dv

passing through the area 2πρ dρ per time interval dt is equal
to 2πnρ dρ|v|f (v)d3v dt , where n is the number density and
f (v) is the velocity distribution. Then the compound atom loss
satisfies the equation (here the factor of 1/2 is introduced to
correct for double counting)

dN

dt
= −2γm(t)

N

2
= −γm(t)N,

γm(t) =
∫∫

2πnρ dρ|v|f (v)d3vPm.

Explicit evaluation yields the cross section

σm(t) = 2π

∫ R×

0
ρ dρ Pm(ρ,t)

= (2πR2
×)

4π

N
�m

�R×
v

sin2(
√

N�0t/2) (A4)

and the rate

γm(t) = n(2πR2
×)

4π

N
�m�R× sin2(

√
N�0t/2).

For a spherical volume of radius Rs, n = 3N/(4πR3
s ), thereby

γm(t) = 6π

(
R×
Rs

)3(
�R×
R×

)
�m sin2(

√
N�0t/2).

The rate equation has the solution

N (t) = N (0) exp

[
−

∫ t

0
γm(t ′)dt ′

]
,

∫ t

0
γm(t ′)dt ′ = γ̄m

[
t − sin(

√
N�0t)

2
√

N�0

]
,

γ̄m = 3π

(
R×
Rs

)3(
�R×
R×

)
�m.

For sufficiently long time (t � 4π/(
√

N�0)), the total number
of atoms falls off exponentially as

N (t) = N (0) exp (−γ̄mt).

Finally, the experiments are carried out with mesoscopic
ensembles and as discussed in the main text, the radius of
the resonance shell R× maybe comparable to Rs (or blockade
radius). It is clear that if R× > 2Rs , the atoms are not going
to be affected by that particular molecular resonance. We may
further introduce a geometric probability factor g(R×/Rs)

γm(t) → γm(t)g(R×/Rs).

Further rates from multiple resonances add

γm(t) →
∑

k

γ k
m(t),

where γ k
m is the rate due to an individual resonance shell

at Rk
×.

APPENDIX B: DERIVATION OF THE INHOMOGENEOUS
BROADENING

In the main body it is mentioned that the molecular
resonances have more consequences than just leading to the
molecular rate γm. Here we consider the additional loss of
coherence by inhomogeneous broadening.

1. Hamiltonian

We assume that the N identical atoms move negligibly over
the entire extent of the dynamics in question, so we need to
track only the electronic degrees of freedom. We model each
atom as a four-level system, with states |g〉,|r〉,|r ′〉,|r ′′〉. Let
us define the following collective states,

|G〉 = |g〉⊗N, (B1)

|j 〉 = σ
†
j |G〉, (B2)

|j,k〉 = σ ′†
j σ

′′†
k|G〉, (B3)

where σj = |g〉j 〈r|j ,σ ′
j = |g〉j 〈r ′|j , and σ ′′

j = |g〉j 〈r ′′|j ,(j �=
k). An external driving field coherently couples |g〉 with
|r〉,|r ′〉, and |r ′′〉. When two atoms are in |r ′r ′′〉 or |r ′′r ′〉
states, they interact via the Rydberg interaction. The resulting
Hamiltonian is

H =
∑

j

�0

2
(|G〉〈j | + H.c.)

+
∑
j,k

�m

2
(|j 〉〈j,k| + |j 〉〈k,j | + H.c.)

+
∑
j,k

�jk|j,k〉〈j,k|. (B4)

In the ideal case, when �jk → ∞,|G〉 is coherently coupled
to the symmetric combination of a single excitation,

|S〉 = 1√
N

∑
j

|j 〉, (B5)

and the resulting dynamics is a Rabi oscillation between |G〉
and |S〉, with Rabi frequency �R = √

N�0, if the system starts
in |G〉.

To investigate the deviation of the real dynamics from the
ideal one, we focus on the coupling of |j,k〉 states to |S〉. Using
this notation the Hamiltonian can be written as

H =
√

N�0

2
(|G〉〈S| + H.c.)

+
∑
j,k>j

�m√
N

(|S〉〈Mjk| + H.c.)

+
∑
j,k>j

�jk|Mjk〉〈Mjk|, (B6)

where |Mjk〉 = |j,k〉+|k,j〉√
2

, and the nonsymmetric combinations
are not coupled to |S〉.
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2. Broadening

We adiabatically eliminate the doubly excited states {|j,k〉}
from Eq. (B6) to arrive at the effective Hamiltonian,

Heff = h�0 +
∑

j

(
�j − i

�j

2

)
|j 〉〈j |

+
∑
j,k>j

�jk

2
(|j 〉〈k| + |k〉〈j |), (B7)

where h�0 is the first term in Eq. (B6), and the new coefficients
are

�j = −
∑
k �=j

�2
m

4

P
�jk

, (B8)

�jk = − �2
m

2�jk

, (B9)

�j = 2π
∑
k �=j

�2
mδ(�jk), (B10)

where P indicates principal value. The �j terms describe
the resonant excitation, which is as discussed in the previous
section and lead to the molecular decay rate γm.

The j dependence of �j results in inhomogeneous broad-
ening, δ� :=

√
〈�2〉 − 〈�〉2.

δ� = �2
m

4

√√√√√Var

⎛
⎝∑

k �=j

− P
�jk

⎞
⎠

= �2
m

4

√√√√√Var

⎛
⎝∑

k �=j

P
�E

R3
jk

R3
jk − R3×

⎞
⎠, (B11)

where we used �jk = U (Rjk) = C3

R3
jk

− �E , i.e., a van der

Waals interaction potential between the Rydberg atoms and
eliminated C3 by using that R3

× = C3
�E

.
The sum can be written as

Dj :=
∑
k �=j

P
�E

R3
jk

R3
jk − R3×

= N

V �E

∫
V

d3rk

P|rk − rj |3
|rk − rj |3 − R3×

= N

V �E

∫
V ′

d3r
Pr3

r3 − R3×
, (B12)

where the integrand is more conveniently written in terms
of r = |r| = |rk − rj |. r can be seen as “local” spherical
coordinate, centered around rj . Due to global rotational
invariance of the problem we can set rj = rj ẑ without loss
of generality. We then find (see Sec. B 4)

DjV �E

N
=

∫ R−rj

0
4πr2 Pr3

r3 − R3×
dr

+
∫ R+rj

R−rj

2πr2 Pr3

r3 − R3×

(
1 − r2 + r2

j − R2

2rrj

)
dr.

(B13)

We now assume that the singularity is in the first integral,
R× < R − rj . As a result, the second integral is no longer a
principal value integral and since r � R − rj > R× we will
furthermore approximate r3

r3−R3×
≈ 1. The second integral is

then straightforward to evaluate. Finally we use the indefinite
integral ∫

r5

r3 − R3×
dr = 1

3
r3 + 1

3
R3

× ln(r3 − R3
×) (B14)

to find the remaining principal value integral. The result is

Dj = N

�E

{
1 +

(
R×
R

)3

ln

[(
R − rj

R×

)3

− 1

]}
. (B15)

Now we can determine the averages 〈D〉 and 〈D2〉, but since
the above expression for Dj is valid only when rj < R − R×
we modify the averages to only average over a sphere with
radius R − R×:

〈D〉 = 1

N

∑
j

Dj = 1

V

∫
V

d3rj Dj

≈ 3

2(R − R×)3

∫ R−R×

0
r2
j Dj drj , (B16)

〈D2〉 = 1

N

∑
j

(Dj )2 = 1

V

∫
V

d3rj (Dj )2

≈ 3

2(R − R×)3

∫ R−R×

0
r2
j (Dj )2 drj , (B17)

where we also used that Dj only depends on rj = |rj |.
Since we are interested in the regime where R× � R, these
approximations actually do not differ much from the true
averages. Then using the expansion

Dj = N

�E

[
1 − 3

(
R×
R

)3

ln

(
R×

R − rj

)
+ · · ·

]
, (B18)

the averages can be found by a direct evaluation of the integrals
above. The resulting expression for the variance in Dj is then
found to be, up to lowest order in R×

R
:

δD =
√

〈D2〉 − 〈D〉2 = 7

2

N

�E

(
R×
R

)3

. (B19)

With this result we can write the broadening δ� as

δ� = �2
m

4
δD = 7

2
πρd�

2
m

R2
×

|U ′(R×)| , (B20)

where the quadratic dependency on R× was also reproduced
using numerical calculations and in fact is the same as for
the molecular rate γm. This whole calculation can be directly
reused for another potential, van der Waals, for example,
U (Rjk) = C6

R6
jk

− �E . The result is

δ� =
√

12

5
πρd�

2
m

R2

|U ′(R×)|
(

R×
R

)5/2

, (B21)

where again the power of R× is consistent with numerics.

063419-7



ANDREI DEREVIANKO et al. PHYSICAL REVIEW A 92, 063419 (2015)

3. Effect on coherence

The effect of this inhomogeneous broadening is well
approximated by an additional decay of the coherence between
the ground state |G〉 and the symmetric single-excitation state
|S〉 = ∑

i |Ri〉/N , by a factor of e−(δ� t)2
. This is a much

weaker effect than the pure exponential decay, set by γm, and
since δ� � γm for the parameter regime in consideration, the
effect of inhomogeneous broadening can be neglected as long
as γmt < 1.

4. Local spherical coordinates

For completeness we briefly describe the “local” spherical
coordinates mentioned in the above derivation. In favor of
symmetry of the integrand we make the substitution r =
rk − rj , which requires changing the boundaries of the polar
integral. Without loss of generality we can take rj on the z axis.
Then, depending on the relation between r,rj , and R there are
three regions. First, if r < R − rj , then the entire sphere of
radius r = |r| lies within the boundaries of the cloud, and
therefore we have 0 � θ � π . Similarly, if r > R + rj , then
the opposite is true: the cloud lies entirely inside the sphere of
radius r , and therefore there is no contribution to the integral
from this part.

If R − rj < r < R + rj , then there exists a circle, where
the sphere of radius r intersects the boundary of the cloud,
as shown in Fig. 3. The angle between the segments rj and r

is

π − θc = arccos

(
r2 + r2

j − R2

2rrj

)
, (B22)

and therefore we have θc � θ � π . Defining θ0 as the lower
bound of the θ integral, we have θ0(r < R − rj ) = 0 and
θ0(R − rj < r < R + rj ) = θc, so that we can rewrite the

FIG. 3. (Color online) We only need to integrate over that part
(red) of the dotted sphere that is inside the cloud. This corresponds
to a modification of the boundaries for the θ integral, depending on
the relation between r,rj , and R. The figure shows the case when
R − rj < r < R + rj .

FIG. 4. (Color online) 3D density of the atoms in a cubic lattice
(lattice constant: a = 0.995 μm) as a function of distance, R. Each
atom is confined by a harmonic trap to a region of size d = 0.02 μm.
Red vertical lines indicate the position of the resonances given in
Table I. The numbers shown next under the lines are the molecular
coupling coefficients, ξi , for each resonance.

integral in Eq. (B12) as

∫
V ′

d3r f (r) =
∫ R+rj

0
r2 dr

∫ π

θ0(r)
sin(θ )dθ

∫ 2π

0
dφf (r)

=
∫ R−rj

0
4πr2f (r) dr

+
∫ R+rj

R−rj

2πr2f (r)

(
1 − r2 + r2

j − R2

2rrj

)
dr,

(B23)

where f (r) is the integrand that only depends on r .

FIG. 5. (Color online) Decay rate in a 3D lattice normalized
with the homogeneous decay rate result for lattice constants a =
1.00, 0.995, and 0.99 μm. The suppression is strong for small trap
size, and diminishes (γlattice → γhom) for large size. Small changes in
a result in significant changes in the suppression. This is due to the
detailed peak structure of the 3D density in the lattice. As a result,
fine tuning of the lattice constant is required.
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APPENDIX C: SUPPRESSION OF RESONANCE
BY TRAPPING IN REGULAR LATTICE

We investigate the possibility of trapping the atoms in an
3D cubic optical lattice, in order to suppress the effective
decay rate γ , due to double Rydberg resonances. We use the
homogeneous atom density case as a benchmark,

γhom =
∑

j

γj = 2π2�0ρ
∑

i

ξiR
2
×,i�R×,i , (C1)

where the summation is performed over all resonances at the
crossing distances R×,i , each having a width of �R×,i and
molecular coupling factor ξi . Here ρ is assumed to be constant.

We assume that in a 3D cubic lattice, each lattice site holds
a single atom, trapped in the ground state of the harmonic trap.
Let a denote the lattice constant and d be the size of each

trapped wave function. The deeper we make the lattice, the
smaller the d/a ratio can be. For given d,a values, we can
plot the 3D density ρ(R) of the atoms as a function of distance
from a particular lattice site. This is shown in Fig. 4 with a
blue curve.

By taking the R dependence of the atom density ρ(R) into
account, we can write the total decay rate as

γlattice =
∑

j

γj = 2π2�0

∑
i

ρ(R×,i)ξiR
2
×,i�R×,i , (C2)

numerically evaluate, and compare it with the homogeneous
result, γhom. In Fig. 5 we plot γlattice/γhom as a function of
the trap confinement d for different fixed values of a. A
confinement of d/a ≈ 0.01 can suppress the decay to 2%–10%
of its homogeneous density value, depending on the accuracy
of the fine tuning of the lattice constant.
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