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Femtosecond pulses and dynamics of molecular photoexcitation: RbCs example
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We investigate the dynamics of molecular photoexcitation by unchirped femtosecond laser pulses using RbCs
as a model system. This study is motivated by a goal of optimizing a two-color scheme of transferring vibrationally
excited ultracold molecules to their absolute ground state. In this scheme the molecules are initially produced
by photoassociation or magnetoassociation in bound vibrational levels close to the first dissociation threshold.
We analyze here the first step of the two-color path as a function of pulse intensity from the low-field to the
high-field regime. We use two different approaches, a global one, the “wave-packet” method, and a restricted one,
the “level-by-level” method, where the number of vibrational levels is limited to a small subset. The comparison
between the results of the two approaches allows one to gain qualitative insights into the complex dynamics of
the high-field regime. In particular, we emphasize the nontrivial and important role of far-from-resonance levels
which are adiabatically excited through “vertical” transitions with a large Franck-Condon factor. We also point
out the spectacular excitation blockade due to the presence of a quasidegenerate level in the lower electronic state.
We conclude that selective transfer with femtosecond pulses is possible in the low-field regime only. Finally,
we extend our single-pulse analysis and examine population transfer induced by coherent trains of low-intensity
femtosecond pulses.
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I. INTRODUCTION

Rb and Cs atoms have been simultaneously trapped and
laser cooled in a magneto-optic trap down to ultracold temper-
ature (∼100 μK). Ultracold RbCs molecules have been formed
through photoassociation in excited vibrational levels of the
Rb(5s)Cs(6p1/2) 0+, 0−, or 1 symmetries. These molecules
decay through spontaneous emission, mainly toward stable
levels of the Rb(5s)Cs(6s) a3�+ electronic state; the upper of
those levels has a binding energy in the range of 5 cm−1 [1].
The relevant molecular terms are shown in Fig. 1.

In the heteronuclear RbCs molecule, two-step conversion
processes from the a3�+ state (denoted below by a) toward
the X1�+ state (denoted below by X) are possible by using,
as intermediate step, levels of the 0+ or 1 symmetries, with
a spin-mixed character. As a result, molecules in the absolute
ground level Rb(5s)Cs(6s) X1�+ v′′ = 0 are formed. These
processes have been recently investigated experimentally [1,2]
and theoretically [3–5].

Ultracold stable polar molecules in their absolute ground
vibrational level have been populated for the first time [1,2]
using a two-color incoherent population transfer through a
low-lying level of the 1 state. A resonant “pump” laser
pulse transfers the population of the metastable, vibrationally
excited a3�+ molecules to an electronically excited level;
a second tunable “dump” laser pulse then resonantly drives
the population to the absolute ground level. The two laser
pulses used in this stimulated transfer have a duration of
about 5 ns. In the KRb molecule, using a stimulated Raman
adiabatic passage (STIRAP) with counterintuitive pulses in
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the microsecond range, Ni et al. [6] transferred extremely
weakly bound Feshbach molecules in the a electronic state
toward the lowest vibrational level either of the stable X

or of the metastable a states using intermediate level with
symmetry 1.

For several years, researchers at Aimé Cotton Laboratory
are exploring theoretically, on the example of the Cs2 and
Rb2 molecules, coherent schemes using chirped laser pulses
to form molecules in an excited electronic state through
photoassociation of ultracold atoms and then to stabilize them
through stimulated emission [7–9]. The motivation was to fully
exploit optical techniques for controlling the formation of cold
molecules in the absolute ground level. The studied laser pulses
were in the picosecond range, the domain well-adapted to the
vibrational dynamics of the wave packets created by the pulse
in the light-coupled electronic states.

However, from a technological point of view, picosecond
lasers and corresponding pulse shapers are not yet available.
On the other hand, in the femtosecond domain there were
important recent developments of efficient laser sources
and pulse shapers. Furthermore, coherent trains of pulses,
obtained from mode-locked femtosecond lasers [10], permit a
transient coherent accumulation of population, manifested by
the enhancement of transition probabilities and by a gain in
the spectral resolution [11].

Our objective here is to analyze the possibilities offered
by femtosecond sources in implementing efficient two-color
paths for transferring vibrationally excited ultracold molecules
to their absolute ground state. In this scheme the molecules are
initially produced by photoassociation or magnetoassociation
in bound vibrational levels close to the first dissociation
threshold. Numerical analysis is carried out for the RbCs
molecule. More precisely, the present paper is devoted to
the choice of the optimal pulse for implementing the first
step of the two-color paths. Notice that femtosecond pulses
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FIG. 1. (Color online) Photoexcitation of RbCs. Lower panel:
Diabatic potentials for the stable X1�+ (lower thick dashed black
line), the metastable a3�+ (lower thick continuous black line), and
the excited b3� (upper thick continuous black line) and A1�+ (upper
thick dashed black line) electronic states. The origin of energy is set
at the dissociation limit Rb(5s)Cs(6s). Vibrational wave functions for
the initial level a3�+ v′′ = 37 [upper continuous yellow (light gray)
line] and for the final level X1�+ v′′ = 0 [lower continuous yellow
(light gray) line] in the two-color process. Wave functions for the b3�

v′ = 43 level [continuous orange (dark gray) line] corresponding to
the resonant transition (oblique black continuous line) and for the
b3� v′ = 195 level [continuous red (black) line] corresponding to
the off-resonant “vertical” transition (vertical dashed black line). The
wave functions are drawn at their absolute energy. The bandwidth of
the laser pulse is shown as the thick black horizontal line. Upper panel:
Adiabatic potentials 0+ P1/2 (thick continuous black line) and 0+ P3/2

(thick dashed black line). The energy origin is at the Rb(5s)Cs(6p)
dissociation limit. The two vibrational components of the coupled
0+v′ = 70 level in the Hund’s case c representation are drawn,
respectively, b3� [medium-thick red (black) line] and A1�+ [thin
green (medium gray) line]. In the inset, these two components are
compared with the wave function of the b3� v′ = 43 level [medium
orange (dark gray) line] for 8 < R < 12 a0.

have a broad bandwidth and may reach high intensities.
Consequently, we have to analyze the dynamics of coherent
excitation of a large number of vibrational levels, from the
low-field up to the high-field regime.

To solve the time-dependent Schrödinger equation, we first
use the “wave-packet” method (WP), where we calculate
globally the evolution of vibrational wave packets propagating
along electronic states coupled by the laser pulse [7]. Using
this approach, it appears that, in the high-field regime, the
calculated dynamics and the population transfer drastically
differ from what is expected from intuitive two-level-system
arguments. To understand these surprising results, we compare
the WP results to solutions obtained using a small subset of
vibrational levels: we refer to this model as the “level-by-level”
method (LbyL). In both approaches, the dependence of the
wave function on the interatomic distance R is obtained
from the mapped Fourier grid Hamiltonian (MFGH) method
[12,13].

By comparing the WP results with the LbyL solutions, we
precisely identify vibrational levels critically responsible for
the strongly nonlinear dynamics in the high-field regime. In the
high-field regime, the dynamics of the photoexcitation process
is governed both by nearly resonant and by far-from-resonance
excitations. The adiabaticity of the resonant and nonresonant
excitations can be easily analyzed in detail in the simple case
of a two-level system. For a multilevel system, we show that,
in the high-field regime, the dynamics of time evolution of
the population in nearly resonant levels is strongly affected
by the adiabatic excitation of far-from-resonance levels. For
a particular level, the adiabaticity of the excitation by an
unshaped Gaussian pulse is found to be simply related to the
value of its detuning with respect to the carrier laser frequency.
In the photoexcitation process under study, the initial level
lies close to the dissociation threshold, in an energy domain
where the density of vibrational levels is high. We show that
the presence of such a quasidegenerate group of levels in
the ground electronic state leads in the high-field regime to
a spectacular blockade of the excitation process.

We conclude from the analysis that, where femtosecond
laser pulses are concerned, control of the photoexcitation
process is possible only in the low-field regime. To improve
the efficiency of the population transfer, we investigate some
schemes using coherent trains of low-intensity femtosecond
pulses.

The paper is organized as follows. First, we specify the
photoexcitation process (Sec. II A) and also characterize
Gaussian pulse (Sec. II B). We then briefly describe the
two employed approaches (the WP and LbyL methods) to
solving the time-dependent Schrödinger equation (Sec. II C).
The photoexcitation dynamics is dramatically affected as
the pulse intensity is increased. Its dependence on the
pulse intensity is computed in the WP approach and is
described in Sec. III. These results are further analyzed
in Sec. IV in the framework of the LbyL method. This
framework allows us to identify levels responsible for the
observed photoexcitation dynamics (Sec. IV A). We further
exhibit the link between adiabaticity and detuning first in
the simple case of a two-level system (Sec. IV B) and
then for the multilevel system under study (Sec. IV C). The
excitation blockade due to the presence of quasidegenerate
group of levels in the ground state is studied in Sec. IV D.
Finally, we comment on the photoexcitation dynamics induced
by coherent trains of low-intensity femtosecond pulses in
Sec. V.
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The paper contains several appendices used for recapitu-
lating essential results and to precise notation. Appendix A
briefly reviews the MFGH employed throughout the paper.
The wave-packet and the level-by-level methods are described
in the Appendix B. Appendix C recalls the definition of the
diabatic and adiabatic bases used in our analysis. A simple
model for the blockade of excitation due to the presence of a
quasidegenerate group of levels in the lower electronic state is
described in Appendix D, whereas Appendix E lists relevant
properties of ultrashort pulse trains.

II. PHOTOEXCITATION OF RbCs

A. Photoexcitation process

In the RbCs molecule, it has been shown that the two-
color path a3�+v′′ = 37 → 0+v′ = 70 → X1�+v′′ = 0 is
very efficient in transferring to the absolute ground level
X1�+v′′ = 0 the molecules obtained in the av′′ = 37 level
after photoassociation followed by spontaneous radiative
decay [14]. The 0+ symmetry results from the coupling
through the spin-orbit interaction of the singlet A1�+ and
the triplet b3� electronic states. The 0+v′ = 70 level is a
mix of vibrational levels b3�v′ (52.7%) with v′ ∼ 43 and
of A1�+v′ levels (47.3%) with v′ ∼ 25. In the first step
of the two-color path, only the |b3�v′〉 components of the
coupled wave functions |0+v′〉 can be excited; we have shown
that the excitation probabilities av′′ = 37 → bv′ = 43 and
av′′ = 37 → 0+v′ = 70 level are very similar. Therefore, in
this paper, we restrict the analysis of the photoexcitation
dynamics to the study of the a3�+v′′ → b3�v′ transition.
The rotational structure of the vibrational levels as well as the
hyperfine structure are ignored.

We consider excitation by a Gaussian laser pulse with a
duration τL and a carrier frequency ωL/2π resonant with
the transition between the vibrational levels av′′

0 = 37 and
b3�v′

0 = 43,

h̄ωL = E(b3�v′
0 = 43) − E(a3�+v′′

0 = 37), (1)

where E(a3�+v′′
0 = 37) and E(b3�v′

0 = 43) are absolute
energies of the two levels.

The initial level has a binding energy of only 5.52 cm−1 and
it lies very close to the Rb(5s)Cs(6s) dissociation limit. The
excited level with binding energy 4392 cm−1 with respect to
the Rb(5s)Cs(6p) dissociation limit is tightly bound (Fig. 1).
There are substantial differences in the two vibrational wave
functions. The wave function of the initial level a3�+v′′

0 = 37
extends from 9 to 27 a0 (a0 denotes the Bohr radius) and the
wave function of the resonant level b3� v′

0 = 43 is located
at much smaller internuclear distance, 7 a0 to 11 a0. As a
result, the Franck-Condon factor is relatively small (|〈av′′

0 =
37|bv′

0 = 43〉|2 = 1.16 × 10−3).
In the same Fig. 1 we also show the wave function, in

the Hund’s case a representation, of the spin-orbit-mixed
vibrational level 0+ v′ = 70, which has an energy close to the
energy of the pure Hund’s case a resonant level b v′

0 = 43. One
should notice the similarity between the vibrational component
in the b triplet state of the wave function 0+ v′ = 70 and
the vibrational wave function of the pure b v′

0 = 43 level for

9.5a0 � R � 11a0, that is, in the R range where the overlap
of both wave functions is the largest.

The wave function of the b v′ = 195 level, strongly off-
resonant with the studied laser pulse but connected to the a v′′

0
level through a “vertical” transition (the outer turning points
of both wave functions are located at Rout ∼ 26 a0), is also
reported in Fig. 1. The corresponding Franck-Condon overlap,
|〈av′′

0 = 37|bv′ = 195〉|2 = 0.183, is much larger than that one
of the resonant transition.

B. Characteristics of the laser pulse

The laser pulse is assumed to have a Gaussian profile
and to be Fourier transform limited with a time-independent
carrier frequency fixed to ωL. We do not consider chirped
pulses because the mechanism of adiabatic population transfer
occurring during excitation with chirped pulses has been
previously extensively analyzed and optimized [7,8,15,16].
The motivation of the present work is to investigate a
completely different excitation mechanism, resulting from the
use of ultrashort unchirped pulses and to interpret in detail its
dynamics.

The laser pulse is described by an electric field with an
amplitude E(t) varying with time as

E(t) = E0f (t) cos[ωLt] = E(t) + E∗(t)

= E0

2
f (t) exp[iωLt] + E0

2
f (t) exp[−iωLt] , (2)

where E0 is the maximum amplitude and E(t) denotes the
complex time-dependent amplitude. The Gaussian envelope
f (t), with maximum f (tP ) = 1, is given by

f (t) = exp

[
−2 ln 2

(
t − tP

τL

)2]
. (3)

The instantaneous intensity I (t) of this pulse illuminating
an area σ is equal to

I (t) = Epulse

στL

√
4 ln 2

π
exp

[
−4 ln 2

(
t − tP

τL

)2]
= IL[f (t)]2,

(4)

where I (tP ) = IL = cε0E2
0 /2 (c is the velocity of light and ε0

the vacuum permittivity). I (t) has a full width at half maximum
(FWHM) equal to τL. The pulse duration and the energy Epulse

of the pulse satisfy

Epulse

σ
=

√
π

4 ln 2
IL τL. (5)

In the spectral domain, the electric field E(ω) is obtained
from the Fourier transform of the complex time-dependent
electric field E(t),

E(ω − ωL) = E0

2
√

2π

∫ +∞

−∞
f (t) exp[iωLt] exp[−iωt]dt

=
√

ln 2

δω2
E0 exp

[
−2 ln 2

(
ω − ωL

δω

)2]
× exp[i(ωL − ω)tP ]. (6)
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For the pulse of duration ∼100 fs considered here, the
bandwith δω = 4 ln 2/τL, defined by the FWHM of |E(ω −
ωL)|2, is of the order of ∼150 cm−1.

C. Photoexcitation dynamics: Wave-packet and
level-by-level descriptions

To analyze the dynamics of the photoexcitation process
[Eq. (1)], we consider the time-dependent Schrödinger equa-
tion describing the internuclear dynamics of the Rb and Cs
atoms,

[Ĥmol − 
μ · 
E(t)]
(t) = ih̄
∂

∂t

(t), (7)

where Ĥmol denotes the molecular Hamiltonian in the Born-
Oppenheimer approximation and where the coupling between
the laser and the molecule, written in the dipole approximation,
is expressed in terms of the dipole moment operator 
μ. The
electric field of the laser pulse with polarization 
ep reads

E(t) = E(t)
ep.

In the excitation process, we focus on the redistribution
of the population between the vibrational levels, disregarding
rotational components of the wave packets 
(t). This approx-
imation is justified because the centrifugal energy is negligible
and thereby vibrational wave packets do not depend on value
of the total angular momentum J . All our calculations were
carried out for a fixed value of J , J = 0 and below we do not
identify it explicitly.

In a simple model restricted to the ground g and excited
e electronic states, the two radial components χg(R,t) and
χe(R,t) of the wave packet 
(R,t) are solutions of the coupled
system,

ih̄
∂

∂t

(
χg(R,t)

χe(R,t)

)

=
(

− h̄2

2μ
∂2

∂R2 + V g(R) Wge(t) cos[ωLt]

Weg(t) cos[ωLt] − h̄2

2μ
∂2

∂R2 + V e(R)

) (
χg(R,t)

χe(R,t)

)
,

(8)

where V g(R) and V e(R) denote the potentials in the ground
and excited states. The coupling of the two electronic states
can be written in terms of Wge(R,t),

Wge(R,t) = −Dge(R)E0f (t) = −2WLf (t), (9)

where Dge(R) denotes the electronic dipole transition moment
resulting from the integration of 
μ over the electronic wave
functions of the ground and excited electronic states. We
disregard the R dependence of the electronic transition dipole,
which is taken as equal to its asymptotic value D. Finally,
WL = DE0/2, the maximum strength of the coupling, is
proportional to the square root of the maximum intensity IL.

The radial part of the wave packets χg(R,t) [respectively,
χe(R,t)] is a coherent superposition of the stationary vi-
brational wave functions, eigenstates ϕg,v′′ (R) with energy
Eg,v′′ [respectively, ϕe,v′ (R) and Ee,v′ ] of the time-independent
Schrödinger equation involving the potential V g(R) [respec-
tively, V e(R)]. Numerically, the radial dependencies of all
functions are described by using the MFGH [12,13]. Let us
emphasize that, for a single potential, the eigenstates consist

of bound levels and discretized scattering levels, which are
automatically included in the decomposition of the wave
packet (see Appendix A). A spatial grid of length L with N

mesh points is used for each potential yielding a quasicomplete
set of N eigenfunctions (see Ref. [17]).

Two methods are used to solve the time-dependent
Schrödinger equation in the rotating wave approximation
(RWA). The first method, the wave-packet description, consists
of determining directly the vibrational wave packets χg(R,t)
and χe(R,t) created by the laser pulse on both electronic
states g and e. Studying the excitation from the vibrational
level a3�+v′′

0 = 37 (Fig. 1), the initial state is chosen to
be this initial vibrational level: χg(R,t = 0) = ϕa,v′′

0
and

χe(R,t = 0) = 0. Details on the numerical methods, presented
in Refs. [8,9], are summarized in Appendix B 1. The time-
dependent Schrödinger equation is solved by expanding the
evolution operator in Chebyschev polynomials [18]. With the
MFGH method being used to represent the radial dependence
of the wave packets, the WP method is a global approach which
automatically incorporates contributions of the complete set
of vibrational levels ϕg,v′′ (R) and ϕe,v′ (R) with 0 � v′,v′′ �
N − 1. The second approach, the level-by-level description,
analyzes the coupling by the laser pulse of some beforehand-
selected subsets of vibrational levels g

n
, em, with gn and

em being numbers of levels in the ground and excited state
vibrational subsets, respectively.

The (gn + em) chosen levels result in the formation of the
ground and excited wave packets written, in the “interaction
representation” [19], as

χ
g
(R,t) =

∑
v′′∈g

n

av′′ (t) exp

[
−i

Eg,v′′ t

h̄

]
ϕg,v′′ (R),

(10)

χ
e
(R,t) =

∑
v′∈em

bv′(t) exp

[
−i

Ee,v′ t

h̄

]
ϕe,v′ (R),

where the phase factor accounts for the “free evolution” of
the stationary vibrational levels. In the RWA approximation,
the instantaneous probability amplitudes av′′ (t) and bv′(t)
are determined by solving a system of (gn + em) coupled
first-order differential equations [Eq. (B6)] presented in the
Appendix B 2. For the initial state of the system, the probability
amplitude of the a3�+ v′′

0 = 37 level is set to unity: av′′ (t =
0) = δ(v′′,v′′

0 ) and bv′ (t = 0) = 0 for all the considered v′
values. The relevant molecular structure data are the relative
energies �

g

v′′,v′′
0

for the ground levels (respectively, �e
v′,v′

0

for the excited levels) with respect to the resonant level v′′
0

(respectively, v′
0),

�
g

v′′,v′′
0

= Eg,v′′ − Eg,v′′
0

= δv′
0,v

′′ ,
(11)

�e
v′,v′

0
= Ee,v′ − Ee,v′

0
= −δv′,v′′

0
,

and the overlap integrals

〈v′|v′′〉 = 〈ϕe,v′ |ϕg,v′′ 〉. (12)

Notice that because of the resonance condition, the energy
spacings �

g

v′′,v′′
0

and �e
v′,v′

0
may be expressed in terms of the

detunings δv′,v′′ [Eq. (B7)].
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The WP and LbyL methods are compared in Appendix
B 3. The WP+MFGH approach allows one to expand the
wave packets χg(R,t) and χe(R,t) over the complete set of
N vibrational levels of the g and e electronic states:

χg(R,t) =
∑

v′′=0,N−1

av′′ (t) exp

[
−i

Eg,v′′

h̄
t

]
ϕg,v′′ (R),

(13)

χe(R,t) =
∑

v′=0,N−1

bv′ (t) exp

[
−i

Ee,v′

h̄
t

]
ϕe,v′ (R).

The evolution of the total population in the two electronic
states may be found as

Pe(t) = 〈χe(R,t)|χe(R,t)〉, Pg(t) = 〈χg(R,t)|χg(R,t)〉.
(14)

More detailed information is provided by decomposing the
wave packets in the basis of unperturbed vibrational levels v′
or v′′ of both electronic states e or g,

Pgv′′ (t) = |〈ϕg,v′′ (R)|χg(R,t)〉|2 = |av′′ (t)|2,
(15)

Pev′ (t) = |〈ϕe,v′ (R)|χe(R,t)〉|2 = |bv′ (t)|2,
which gives the instantaneous population of each stationary
vibrational level. For the LbyL approach, populations similar
to those defined in Eqs. (14) and (15) can be introduced.

Naturally, the LbyL approach is equivalent to the WP
description if and only if the sets g

n
and em encompass

complete sets with gn = em = N levels, that is, all bound
levels and all levels of the discretized continua (Appendix A).
We emphasize that the WP description automatically takes
advantage of the completeness of the set of eigenfunctions
provided by the spatial representation of the Hamiltonian on
a grid. Furthermore, the description of the dynamics does not
depend on the choice of the grid, provided that a sufficiently
wide domain of energy is covered by the eigenvalues obtained
in the MFGH diagonalization of the Hamiltonian matrix.

III. WAVE-PACKET DESCRIPTION: FROM LOW FIELD
TOWARD π PULSE

A. π-pulse condition

Our goal is to find a pulse which yields a population transfer
as large as possible from the initially populated vibrational
level a3�+ v′′

0 = 37 toward the vibrational level b3� v′
0 = 43.

As mentioned above, we consider only the case of an unchirped
transform-limited Gaussian pulse, resonant with the transition
a3�+v′′

0 = 37 → b3�v′
0 = 43, with a duration in the fem-

tosecond domain. The chosen duration is τL = 120 fs, much
smaller than the vibrational period T vib

g,v′′
0

= 4πh̄/(Eg,(v′′
0 +1) −

Eg,(v′′
0 −1)) ∼ 22 ps for the initial level a3�+v′′

0 = 37. It is only
6 times smaller than the vibrational period T vib

e,v′
0
= 0.72 ps

in the excited state. Consequently, in the excited electronic
state, there are only six nearly resonant levels lying within the
bandwidth δω = 122 cm−1 = 5.59 × 10−4 a.u. of the pulse,
the levels 41 � v′ � 45 with detuning δv′v′′

0
, respectively, equal

to −92.0, −46.0, 0, +45.8, +91.5 cm−1.

The pulse is characterized by the electric field amplitude E0

or, equivalently, by the pulse intensity IL or by the parameter
WL [Eq. (9)]. Given a pair of levels (say v′′

0 and v′
0), we may

also introduce the accumulate pulse area [20] as

�(t) = DE0|〈v′
0|v′′

0 〉|
∫ t

−∞
f (t ′)dt ′, (16)

where 〈v′
0|v′′

0 〉 denotes the overlap integral of the resonant
transition [Eq. (12)]. The total pulse area of a Gaussian pulse
is

�F = �(+∞) = WLτL|〈v′
0|v′′

0 〉|
√

2π

ln 2
.

In a two-level system, the angle �(t) fully determines
the probability amplitudes of the lower level a(t) and of the
resonantly excited (i.e., when δv′

0,v
′′
0

= 0) level b(t) as [20]

a(t) = cos
[

1
2�(t)

]
, b(t) = i sin

[
1
2�(t)

]
. (17)

The π pulse for a resonantly driven two-level system is
defined as �F = π ,

τLWL|〈v′
0|v′′

0 〉| =
√

π ln 2

2
or 4

√
2 ln 2

π
�(tP ) = δω, (18)

where �(tP ) = WL|〈v′
0|v′′

0 〉| is the Rabi coupling [see Eq. (20)]
for the resonant transition v′

0 → v′′
0 at the pulse maximum

t = tP .
Accounting for the overlap integral |〈v′

0|v′′
0 〉| = 0.03462

a.u. and for the pulse duration τL = 0.12 ps = 4961.11 a.u.,
the π -pulse condition is satisfied when

Wπ
L = 1

2 DE0 = 6.076 × 10−3 a.u. or IL = 493 GW/cm2.

This large value of intensity is due to the small value of the
overlap integral and to the short pulse duration.

B. Low-field excitation

We, first, consider a weak pulse, WL = 5 × 10−5 a.u., with
a pulse area �F = π/120, corresponding to an intensity at
the maximum of the pulse IL = I (tP ) = 34 MW/cm2. The
initial population in the a3�+v′′

0 = 37 level is set equal to
unity. The evolution with time of the total population in the
excited electronic state b3� and in the resonant level v′

0 = 43
is reported in Figs. 2(a) and 2(b). The considered populations
increase monotonously during the pulse and the total transfer
is very small (0.000343), with half population (0.000161)
in the resonant level v′

0 = 43. For the v′ = 42 and v′ = 44
levels, which have a detuning with respect to the central laser
frequency smaller than δω/2, the population at the end of the
pulse is, respectively, 0.000076 and 0.000088. There is almost
no population in the levels v′ � 40 or v′ � 46.

In the perturbative limit, the amplitude of population of the
initial level is almost not modified during the pulse. After the
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FIG. 2. (Color online) WP approach: Variation with time (in
ps) of the population in the excited electronic state b3�. Panels
(a)–(c): Low-field excitation WL = Wπ

L /120. Panels (d)–(f): High-
field excitation WL = Wπ

L . Panels (a) and (d): Total population∑N−1
v′=0 |bv′ (t)|2 in the excited electronic state. Panels (b) and (e):

Population |bv′
0=43(t)|2 in the resonant level v′

0 = 43. Panels (c) and
(f): Population |bv′=195(t)|2 in the far from resonance level v′ = 195,
corresponding to the “vertical transition” defined in Fig. 1. Duration
of the pulse [tP − τL,tP + τL] [vertical dashed blue (black) lines]
maximum at t = tP [vertical thick continuous blue (black) line]. The
populations have been multiplied by the factor indicated in the upper
right corner.

end of the pulse, for t � tP + τL, the population of the level
v′ in the excited electronic state is equal to

|bv′(t → +∞)|2

= D2E2
0

4
〈v′|v′′

0 〉2

∣∣∣∣
∫ +∞

−∞
exp[−iδv′,v′′

0
t]f (t)dt

∣∣∣∣2

= D2

4
〈v′|v′′

0 〉28π

∣∣∣∣E
(−δv′,v′′

0

h̄

)∣∣∣∣2

, (19)

where δv′,v′′
0

is the detuning of the excitation of the ev′ level
from the gv′′

0 level and where |E(ω − ωL)|2 [Eq. (6)] is the
spectral density of the pulse.

In this limit, the population transferred from the level gv′′
0

toward the level ev′ is proportional to the Franck-Condon
factor 〈v′|v′′

0 〉2 and to the spectral density of the pulse at the
excitation frequency [21]. As a result, for the weak perturbative
pulses, only the nearly resonant levels, such as |δv′,v′′

0
| < δω,

are excited.
The population distribution in the vibrational levels is

presented in the left column of Fig. 3 for the excited electronic
state [Fig. 3(a)] and for the lowest electronic state [Fig. 3(b)],
either at the maximum of the pulse (t = tP ) or after the end of
the pulse (t = 2 ps). The population of the excited vibrational
levels v′ ∼ 180–200 always remains smaller than that of the
nearly resonant levels 40 � v′ � 45, and, at the end of the
pulse, only these levels remain populated. In the low-field
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FIG. 3. (Color online) WP approach: Population |bv′ (t)|2 in the
levels b3�v′ [panels (a) and (c)] and population |av′′ (t)|2 in the levels
a3�+v′′ [panels (b) and (d)], as a function of the energy of the
corresponding levels (in cm−1) with respect to the Rb(5s)Cs(6p)
and Rb(5s)Cs(6s) dissociation limits, respectively. The distributions
of population are shown either at the maximum of the pulse t =
tP = 0.6 ps (black dots) and after the end of the pulse t = 2 ps
[orange (gray) squares]. Panels (a) and (b): Low-field excitation WL =
Wπ

L /120. Panels (c) and (d): High-field excitation WL = Wπ
L . The

resonant level v′
0 is indicated by a large solid black circle at t = 0.6 ps

and a large solid orange (gray) square at t = 2 ps, the level bv′ = 195
is represented by a solid black triangle.

limit, the dynamics of the excitation process involves almost
only the nearly resonant levels (Figs. 2 and 3).

C. Increasing the field strength

Now we vary the laser coupling WL and explore the
population |bv′(t → +∞)|2 transferred to the excited levels
b v′ with 41 � v′ � 45. The results of our WP calculations
are shown in Fig. 4(a). In the low-field limit, the populations
increase proportionally to W 2

L, and, as already noted, only
the levels v′ = 42, 43, and 44 are significantly populated.
However, when the pulse area/intensity are increased, the
population in the levels with v′ � 41 or v′ � 45 becomes
comparable to the population in the nearly resonant levels.
The population in the resonant level at the end of the
pulse, |bv′

0
(t → +∞)|2, first increases with increasing WL

and reaches, for WL ∼ Wπ
L /14 = 0.000425 a.u., a relatively

small maximum, 0.0052 ∼ 1/142. This coupling corresponds
for the resonant transition to an “effective” pulse area of
π/14, still in the low-field regime. As WL is increased
further, |bv′

0
(t = +∞)|2 oscillates with a period roughly equal

to �WL = 0.0007 a.u. Notice that, as a function of WL,
the values of the population maxima decrease after two
oscillations. This behavior strongly differs from what one
would expect intuitively for the resonantly excited two-level
system [gv′′

0 , ev′
0]: In that case, the population would oscillate
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FIG. 4. (Color online) WP approach. Panel (a): Variation of the
population |bv′ (t → +∞)|2 remaining after the pulse in the nearly
resonant excited levels b3�v′ as function of the laser coupling WL

(in units of 10−3 a.u.); v′ = 41 [medium-thick red (black) line];
v′ = 42 (thin black line); v′ = v′

0 = 43 (thick black line); v′ = 44
(medium-thick light gray line); and v′ = 45 [medium-thick orange
(gray) line]. The low-field excitation Wπ

L /100 is indicated by the thin
dashed vertical red (black) line. The couplings WL1 = 4.5 × 10−4 a.u.
(black line), WL2 = 1.15 × 10−3 a.u. [orange (gray) line], and WL3 =
1.75 × 10−3 au (light gray line) corresponding to the maxima of
|bv′

0=43(t → +∞)|2 are indicated by the vertical arrows at the top
of the panel. Right panels: Couplings WLi

i = 1 − 3. Panel (b):
Population transferred to the levels b3�v′ as function of v′. Panel
(c): Population redistributed in the levels a3�+v′′ as function of v′′.

between the values of 0 and 1, with a period equal to 2Wπ
L , the

value of 1 being reached at WL = Wπ
L = 6.076 × 10−3 a.u.

The population distribution among the levels of the excited
b3� and initial a3�+ electronic states after the pulse is
presented in Figs. 4(b) and 4(c) for three values of the coupling
WL. These couplings correspond to the first three maxima
in the variation of |bv′=43(t → +∞)|2 as a function of WL

[see the vertical arrows at the top of Fig. 4(a)]. For WL1 =
4.5 × 10−4 a.u., only three nearly resonant levels are populated
and no significant redistribution of population occurs in the
av′′ levels. For WL2 = 1.15 × 10−3 a.u., more bv′ levels, with
39 � v′ � 46, are populated and the population is recycled
back to levels av′′ of the initial state with 25 � v′′ � 43. For
WL3 = 1.75 × 10−3 a.u., a still larger number of av′′ and bv′
levels is involved in the redistribution of population.

D. π pulse: Resonant and far-from-resonance excitation

The time evolution of the total population
∑N−1

v′=0 |bv′ (t)|2
transferred to the excited electronic state b3� during the
excitation by a pulse with a large coupling strength Wπ

L is
presented in Fig. 2(d). Population maximum (0.094) is attained
at the maximum of the pulse t = tP ; it becomes smaller
when the pulse intensity decreases. The final value, equal
to 0.019, is much smaller than unity. The evolution of the

population |bv′
0
(t)|2 of the resonant level v′

0 = 43 is shown in
Fig. 2(e). This population does not increase monotonically,
as one would expect for a π pulse in a two-level system,
but exhibits several (∼11.5) oscillations and the transfer is
low (0.00064). A similar behavior is observed for the nearly
resonant levels v′ = 42 and v′ = 44 with final populations
of 0.00043 and 0.00059, respectively. Figure 3 shows the
population distribution over various levels of the excited
[Fig. 3(c)] and of the lowest [Fig. 3(d)] electronic states at
two times t = tP = 0.6 ps and at t = 2 ps. We find that at
the end of the pulse a significant fraction of the population is
transferred to a large number of strongly bound b3�v′ levels,
mainly to the levels 26 < v′ < 56 with binding energies in the
range of −5200 to −3800 cm−1. The most populated levels,
v′ ∼ 31 and v′ ∼ 51, with respective detunings δv′,v′′

0
= +560

cm−1 and δv′,v′′
0

= −360 cm−1, have a population ∼0.0013,
equal to twice the population of the resonant level v′

0 = 43.
Population is also redistributed within bound and scattering
levels of the ground a3�+ v′′ state, in particular within levels
32 � v′′ � 41 (population >0.005). The difference in the
energies of these levels with respect to the initially populated
level �

g

v′′,v′′
0

= δv′
0,v

′′ [Eq. (11)] lies in the range −4.2 cm−1 �
δv′

0,v
′′ � 11.3 cm−1. Only 76% of the population remains in

the initial v′′
0 = 37 level.

At the maximum of the pulse, there are many levels
of the excited electronic state, v′ ∼ 180–200, which have a
population larger by a factor of at least 10 than the population
in the nearly resonant 41 � v′ � 45 levels (|δv′,v′′

0
| < 100

cm−1). These strongly populated levels are such as δv′,v′′
0

∼
4300 cm−1, so they lie far outside the pulse bandwidth
and correspond to highly far-from-resonance excitations.
Because of their high population during the pulse, these levels
contribute significantly to the excitation dynamics. The time
evolution of the population |bv′=195(t)|2 of the b3�v′ = 195
level, is reported in Fig. 2(f). This is the most populated level
in the excited electronic potential with a population reaching
0.0134 at the maximum of the pulse. The time dependence
of this population follows that of the envelope of the pulse
intensity, |f (t)|2 [Eq. (3)]. Note that in the low-field case
[Fig. 2(c)], the population of the v′ = 195 level is always
negligible (<10−6).

It is to be emphasized that this behavior cannot be explained
as Rabi cycling, contrary to what could be intuitively expected
considering the large value of the instantaneous Rabi coupling
�(v′,v′′

0 ,t) arising from the large value of the detuning
δv′=195,v′′

0
. We recall the definition of the instantaneous Rabi

coupling at time t for nonresonant transition a v′′ → b v′:

�(v′,v′′,t) = 1
2

√|δv′,v′′ |2 + 4|f (t)〈v′|v′′〉WL|2, (20)

where 〈v′|v′′〉2 denotes the Franck-Condon factor. The
b3�v′ = 195 level is the level of the excited electronic state
possessing the largest population at the maximum of the pulse.
This can be understood by reminding that this level is excited
from the initial level av′′

0 through a vertical transition (see
Sec. II A).

The importance, in the strong field regime, of off-resonant
excitation of levels strongly favored by high Franck-Condon
factors but lying energetically above the spectral bandwidth
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of the pulse has been experimentally observed in the
photoassociation of ultracold atoms with shaped femtosecond
pulses [22,23].

IV. ANALYSIS OF THE π -PULSE DYNAMICS:
LEVEL-BY-LEVEL DESCRIPTION

The WP results demonstrate that, for the high coupling
strength Wπ

L , the dynamics of the excitation process involves
a large number of vibrational levels, both in the ground a3�+
and in the excited b3� electronic states. To better understand
the dynamics of the population of these levels, we performed
LbyL calculations, with various subsets g

n
and em of bound

and quasicontinuum (scattering) levels. These subsets are
simply denoted as [v′′

2 , . . . v′′
gn

, v′
1,v

′
2, . . . v

′
em

].

A. Levels involved in the dynamics

1. LbyL basis set reproducing the WP dynamics

In the first step we try to reproduce, by optimizing the
restricted LbyL basis set, the time evolution of the total
population transferred to the excited electronic state by the π

pulse (WL = Wπ
L ). Some representative results are displayed

in the left column of Fig. 5, where the following basis
sets are considered: set A [v′′ = 30–50, v′ = 0–218], set B
[v′′ = 20–50, v′ = 30–50,190–200], and set C [v′′ = 0–204,
v′ = 0–218]. These levels are either bound or discretized
scattering vibrational levels in the a3�+ or b3� electronic
states. Let us remark that, with the mesh grid used in the MFGH
approach, only a small energy range (0 < E < 0.01 cm−1) is
described by “physical” scattering levels (see Appendix A).

The relatively large set B includes, in the lower state, bound
levels lying close to the initial one, v′′

0 = 37, and, in the excited
state, levels located in the vicinity of the resonantly excited
v′

0 = 43 level or in the vicinity of the far-from-resonance v′ =
195 level corresponding to the vertical transition. For this set,
the total population at the maximum of the pulse t = tP is
larger by a factor 2 than the population obtained by using the
WP approach. At the end of the pulse, a too-large population
(∼0.12) remains in the excited state. For set A, which includes
all the bound levels in the excited state and, in the lower state, a
smaller number of levels located in the vicinity of the initially
populated one, a similar behavior is obtained, yielding the
same final population transfer but a slightly smaller maximum
value at t ∼ tP .

To reproduce in the LbyL approach the results obtained in
the WP approach, we have found that it is necessary to employ
set C, which includes all bound vibrational levels in the excited
state and a very large number of levels (205) in the lower state,
i.e., all bound levels (0 � v′′ � 48) and discretized scattering
levels in a large energy range, with an energy up to 1100 cm−1,
described by physical or unphysical levels [17]. In this LbyL
calculation, the time evolution of the total population in the
excited state reproduces the one from the WP approach, in
particular, the low value of the population (∼0.025) transferred
at the end of the pulse. Furthermore, the time dependence of
the populations in the resonant level v′

0 = 43 or in the level
v′ = 195 and also the variation of the total population in the
bound b3� levels, represented in the right panel of Fig. 5,
reproduce perfectly the variations calculated directly in the
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FIG. 5. (Color online) LbyL description with three different basis
sets of levels in the lower (v′′) or the excited (v′) electronic states;
these sets, labeled A, B, and C, are defined in the text: Variation of
the population in the excited b3�v′ levels as a function of time (in
ps). The pulse [vertical continuous and dashed blue (black) lines]
satisfies the π -pulse condition. Panel (a): Total population for set A
[continuous orange (light gray) line], B [dashed red (dark gray) line],
and C (continuous black line). Panels (b)–(d): “Optimal” basis set C
[v′′ = 0–204, v′ = 0–218] reproducing the results of the WP method
(Fig. 2); (b) Total population in the bound levels v′ = 0–218; (c)
Population in the resonant level v′

0 = 43; (d) Population in the off-
resonant level b3� v′ = 195, corresponding to the vertical transition.
Some populations have been multiplied by the factor indicated in the
upper right corner.

WP approach (Fig. 2). In the following, set C is called the
“optimal” LbyL basis set.

The wide energy range covered by the levels involved in
the dynamics is not negligible compared to the frequency
of the pulse h̄ωL ∼ 7000 cm−1. Therefore, the validity of
the RWA approximation is questionable. Indeed, for the
pairs of levels Ee,v′ , Eg,v′′ included in the basis set, the

frequencies of the “rotating” contributions [
Ee,v′−Eg,v′′

h̄
− ωL]

are not always negligible compared to the frequencies of the
neglected “counter-rotating” contributions [

Ee,v′−Eg,v′′
h̄

+ ωL]
(Appendix B 2). Further investigation would be needed to
check that the introduction of the counter-rotating terms does
not change the main conclusions of the present analysis.

2. Two types of dynamics in the excited electronic state

To go further in the analysis of the dynamics, we separate
the excited levels of the optimal set C into two different groups,
according to the time evolution of their individual population
|bv′(t)|2.

For levels 0 � v′ � 60 with a detuning varying in the
range 2200 cm−1 � δv′v′′

0
� −790 cm−1, the dynamics of

population is very similar to that of the resonant level v′
0 = 43.

During the pulse the population |bv′ (t)|2 exhibits a small
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FIG. 6. (Color online) LbyL description, optimal basis set C:
Variation of the population in the excited b3�v′ levels as a function
of time (in ps). The laser pulse [vertical continuous and dashed blue
(black) lines] satisfies the π -pulse condition. Total population of
the excited bound levels v′ = 0–218 (thick continuous black line).
Nonadiabatic evolution for the population in the levels v′ = 13–
60 (thin continuous black line) resulting in a nonvanishing final
population transfer. Adiabatic evolution, following the variation of
the pulse intensity, for the far-from-resonance levels v′ = 167–218
[thin dashed red (black) line] located around the vertical transition
v′ ∼ 195 and the most populated at the maximum of the pulse or for
the intermediate group of levels v′ = 61–166 [thin continuous orange
(gray) line].

number of oscillations of a relatively small amplitude and
some population remains in these levels after the pulse. The
sum of the population in this group of levels grows almost
monotonically during the pulse and reaches the final value
∼0.02 (Fig. 6).

As we move further off-resonant and consider bound levels
61 � v′ � 218, we find that the evolution of the population is
similar to that of the level v′ = 195, i.e., traces time variation
of the pulse intensity ∝[E(t)]2. The total population transferred
at the maximum of the pulse t = tP is very high ∼0.08 and
it is larger than the population present in the group of levels
close to the resonance. Yet no population remains after the end
of the pulse.

Thus, it appears that two types of dynamics are observed
for the levels of the excited electronic state. Levels with a
not-too-large detuning remain populated after the laser pulse.
Taking into account that the pulse is symmetrical, Gaussian,
and unchirped, their evolution is necessarily nonadiabatic.
Conversely, levels corresponding to highly-off-resonant ex-
citation possess the largest population at the maximum of the
pulse, but they do not retain their population after the pulse:
such dynamics has, thus, a quasiadiabatic character. Below we
present a qualitative description which emphasizes a relation
between detuning and adiabaticity.

B. Adiabaticity

1. Introduction

Adiabaticity of the evolution of a system is naturally
expressed in the basis of instantaneous eigenvectors of the

TABLE I. Different two-level systems [v′′, v′] considered here. δ

is the detuning of the pulse, 〈v′|v′′〉 is the overlap integral between
the wave functions of the two levels, and �(tP ) is the coupling at
the maximum of pulse. The pulse has a duration τL = 0.12 ps and a
bandwidth δω = 5.59 × 10−4 a.u.

System Excitation δ (a.u.) 〈v′|v′′〉 �(tP ) (a.u.)

a Quasi 10−8 0.03462 2.10 × 10−4

resonant
b Nearly 10−4 0.03462 2.10 × 10−4

resonant
c Out of 10−3 0.03462 2.10 × 10−4

resonance
d Out of 2 × 10−3 0.03462 2.10 × 10−4

resonance
e Quasi 10−8 0.427364 2.59 × 10−3

resonant
f Far from 0.0198 0.427364 2.59 × 10−3

resonance

Hamiltonian, the so-called adiabatic basic [20,24] (see Ap-
pendix C). For a system with more than two levels, there is
no general way to construct the instantaneous adiabatic basis
and, thus, no general expression of the adiabatic theorem [24].
In fact, the relationship among adiabaticity, detuning, laser
width, and coupling strength can be perfectly illustrated in the
case of a two-level system [v′′, v′], where the instantaneous
adiabatic levels can be explicitly constructed. The unperturbed
vibrational levels |g〉 ≡ |v′′〉 and |e〉 ≡ |v′〉 define the diabatic
basis (see Appendix C). The time-dependent wave function
can be decomposed on the diabatic levels 
(t) = a(t)|g〉 +
b(t)|e〉. We assume that only the level |g〉 is initially populated.
The levels are coupled by a Gaussian pulse E0f (t), with
bandwidth δω = 5.59 10−4 a.u., as described in Sec. II B.
In the RWA approximation, the time-dependent coupling is
�(t) = D × E0〈v′|v′′〉f (t)/2.

Below we study six different cases, labeled a to f ; these
differ by overlap integrals and detunings (see Table I). For
the overlap integral, we choose values corresponding either
to the resonant transition 〈v′

0 = 43|v′′
0 = 37〉 (systems a to d)

or to the vertical transition 〈v′ = 195|v′′
0 = 37〉 = 12.3 〈v′

0|v′′
0 〉

(systems e and f ). The amplitude of the electric field E0 and the
dipole transition moment D are chosen such as, for 〈v′|v′′〉 =
〈v′

0|v′′
0 〉, the π pulse condition, or WL = Wπ

L , is satisfied except
for the cases e and f , where �F ∼ 12.3 π . Therefore, the
maximum coupling is either smaller, �(tP ) = δω/2.66 (cases
a to d), or larger, �(tP ) = 4.63 δω (cases e and f ), than the
pulse bandwidth.

We consider four classes of detunings. When the detuning
satisfies |δ| � δω, the systems are called “quasiresonant”
(cases a and e). Systems where the detuning is |δ| < δω

are called “nearly resonant” (case b). Larger detunings such
as |δ| > δω correspond to “off-resonant” excitation (cases c

and d). “Far-from-resonance” excitation, such as |δ| � δω, is
represented by the case f , where the detuning δ = 35.4 δω is
the one of the vertical transition v′′

0 → v′ = 195.
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FIG. 7. (Color online) Two-level system: Analysis, as a function of time (in ps), of the dynamics for the different cases a to f described
in Table I. The maximum and the duration of the pulse are indicated by the vertical continuous and dashed blue (black) lines. First row:
Population Pdiab(t) in the diabatic excited level [e〉, with the initial population lying in the lower diabatic level [g〉. Second row: Variation with
time of the population P

(+)
adiab(t) in the adiabatic level 
+(t), with the initial population lying in the adiabatic level 
−(t = 0) ≡ |g〉. Third row:

Rotation angle θ (t)/π [Eq. (C17)] defining the instantaneous adiabatic levels 
±(t). Fourth row: Parameter Qadiab(t) [Eq. (21)] characterizing
the adiabaticy of the instantaneous transfer. Fifth row: Pulse parameter �(t)/δ. The quantities have been multiplied by the factor indicated in
the upper left corner.

2. Two-level system: Diabatic basis

For the six considered cases, the time variation of the
population Pdiab(t) = |b(t)|2 of the excited diabatic level |e〉
is calculated by solving the coupled system Eq. (C13). The
results are presented in the first row of Fig. 7. For quasiresonant
systems, the time dependence of the population exhibits
oscillations very similar to the Rabi oscillations of a resonantly
excited two-level system. In case a, the population, initially in
the ground level, is transferred continuously to the excited level
during the pulse. In the quasiresonant case e, the population
oscillates more than 6 times from 0 to 1 between the ground and
the excited levels, in agreement with the increase of the pulse
area; at the end of the pulse 26.62% of the population remains
in the excited level. For the nearly resonant case b, almost all
the population, up to 91.6%, is transferred monotonously to
the excited level.

For the off-resonant cases c and d and for the far-from-
resonance case f , the time evolution of the population in the

excited level follows a Gaussian evolution similar to that of the
pulse intensity ∝[f (t)]2. After the end of the pulse, the total
population returns to the initial level. When the maximum
value of the coupling is small (for approximately �(tP )/|δ| <

3/10), the perturbative limit is valid and Pdiab(t) ∼ [�(t)/δ]2.
This occurs in the systems c, d, and f , where �(tP )/δ =
0.21, 0.10, and 0.13, respectively; this can be also verified by
comparing in Figs. 7(c), 7(d), and 7(f) the first and fifth rows.
The maximum value of the population in the excited diabatic
level is small and varies proportionally to |〈v′

0|v′′
0 〉/δ|2.

3. Two-level system: Adiabatic basis

To resume the analysis of the adiabaticity of the population
transfer, we introduce now the adiabatic basis, made of the
instantaneous eigenstates |
±(t)〉 of the Hamiltonian (see
Appendix C 4). The time-dependent wave function is decom-
posed on the adiabatic levels 
(t) = exp(−i δ

2 t) [α(t)
−(t) +
β(t)
+(t)]. For a fully adiabatic process, the populations
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|α(t)|2 and |β(t)|2 remain constant during the pulse. In
particular, if the system is initially in the adiabatic level
|
−(t = 0)〉 ≡ |g〉, it remains in the instantaneous adiabatic
level |
−(t)〉 during the pulse and is in the level |
−(t →
+∞)〉 after the end of the pulse. For a nonadiabatic process,
the population of the adiabatic levels varies, and the stronger
the nonadiabatic instantaneous population transfer, the more
rapid and important the changes of the instantaneous adiabatic
populations. In our study, the detuning δ is fixed and only the
coupling �(t) varies with time, therefore, |
−(t → +∞)〉 ≡
|g〉. Simply, unless there is a significant nonadiabaticity, there
is no population transfer. Conversely, a measure of the global
nonadiabaticity of the process is related to the population
transfer to the excited level after the pulse.

The time dependence of the population P
(+)
adiab(t) = |β(t)|2

in the adiabatic level |
+(t)〉 is obtained by solving the coupled
system Eq. (C22), assuming that the population is initially in
the adiabatic level |
−(t = 0)〉 ≡ |g〉 (|α(t = 0)| = 1). The
results are drawn in the second row of Fig. 7.

To characterize the adiabatic character of the instantaneous
population transfer, we introduce the parameter Qadiab(t)
deduced from the time-dependent Schrödinger equation in the
adiabatic basis [Eq. (C21)]:

Qadiab(t) = 1

2
h̄θ̇(t)/[E+(t) − E−(t)]

= 1

2

δ�̇(t)

{δ2 + 4[�(t)]2}3/2
. (21)

In these equations, E±(t) [Eq. (C16)] denote the energies
of the instantaneous adiabatic levels and θ (t) [Eq. (C15)] is
the rotation angle occurring in the unitary matrix defining
the adiabatic levels. Here and hereafter, the dot indicates the
time derivative. A strongly nonadiabatic instantaneous transfer
corresponds to a high Qadiab(t) value. From Eq. (21), one can
deduce that nonadiabaticity occurs for a small detuning |δ|,
for a small coupling strength �(t), i.e., at the beginning and at
the end of the pulse or for a pulse with low intensity, and also
when the rotation angle θ (t) varies rapidly.

The time dependencies of the rotation angle θ (t)/π and of
the parameter Qadiab(t) are shown, respectively, in the third
and fourth rows of Fig. 7.

4. Two-level system: From quasiresonant to
far-from-resonance excitation

The described two-level model is useful for understanding
the role of adiabaticity for both resonant to far-from-resonance
excitations. For strictly resonant excitation, δ = 0, and the
rotation angle [Eq. (C17)] is equal to θ (t) = π

2 at every time;
the initial wave function |g〉 then corresponds to an equal
mix of the two adiabatic levels |g〉 = 1/

√
2[|
−(t = 0)〉 −

|
+(t = 0)〉]. During the evolution, there is no nonadiabatic
coupling [θ̇(t) = 0] and no change in the population of
the adiabatic levels. The population oscillates between the
ground and excited levels at the instantaneous Rabi frequency
�(v′,v′′,t)/h̄.

For quasiresonant excitation, with a very small detuning
|δ| � �(tP ), as, for example, δ = 10−8 a.u. (cases a and
e), the rotation angle θ (t) is almost equal to zero at the
beginning and at the end of the pulse, when �(t) � |δ| (Fig. 7).

Conversely, when �(t) � |δ|, the rotation angle remains
constant and equal to θ = π

2 . For t ∼ tna± , with 2|�(tna±)| =
|δ| [or θ (tna±) = π

4 ], the rotation angle changes rapidly. Two
sets of nearly adiabatic levels can be introduced, 
0

±(t), valid
at the beginning t < tna− or at the end of the pulse t > tna+
and 
P

± (t), valid during the pulse tna− < t < tna+ . During
these three time intervals, the evolution is completely adia-
batic. For t ∼ tna± = tP ± τL[ 1

2 ln 2 ln( DE0|<v′
0|v′′

0 〉|
δ

)]
1
2 , the nona-

diabatic couplings Qadiab(tna± ) ∼
√

ln 2
2δτL

√
ln[ 2�(tP )

|δ| ] are huge,

of the order of 3 × 104 in the quoted examples. Therefore,
strong instantaneous population transfer between the adiabatic
levels occurs only around tna± . The value |tna± − tP | ∼ 0.34 ps
is much larger than the pulse duration τL = 0.12 ps. The
population transfer occurs, thus, in the wings of the Gaussian
pulse, at the turn-on and turn-off of the pulse, when the laser
intensity is almost negligible. For t < tna− , the population
remains in the lowest adiabatic level, described by the wave
function 
(t) = |g〉 exp[− i

h̄
Egt]. If one sets Eg = 0, then

there is no change in the phase of this wave function.
For tna− < t < tna+ , θ (t) = π

2 and the adiabatic levels 
P
± (t)

correspond at each time to an equal mix of both diabatic levels
with a phase varying with time [Eq. (C25)]. These adiabatic
levels evolve as

|
P
± (t)〉 = 1√

2
[∓|g〉 + |e〉] exp

[
− i

h̄

∫ t

tna−

E±(t ′)dt ′
]
.

For tna− < t < tna+, the wave function 
(t) can be decom-
posed on these states, with amplitudes αP (t) and βP (t). The
absolute values of these amplitudes remain constant [see row
2 in Figs. 7(a) and 7(e)]. These populations can be estimated
in the sudden approximation [24], by projecting the adiabatic
wave function |
0

−(tna−)〉, valid just before tna− , on the adiabatic
functions 
P

± (tna−), valid just after tna− . In this way, one obtains
|αP (t)| = |βP (t)| = 1√

2
, just like for the strictly resonant

excitation. The Rabi oscillations occurring at quasiresonance
[Fig. 7(e)] in the population of the excited diabatic levels
|<
(t)|e〉|2, for tna− < t < tna+ , result from a beating effect
in the coherent superposition of the 
P

± (t) adiabatic levels. At
t = tna+ , a strong nonadiabatic coupling occurs again during a
very short time. The sudden approximation allows one again
to obtain the value of the final population of the diabatic levels
|g〉 and |e〉 after the end of the pulse, in terms of the quantity
�′ = ∫ tna+

tna−
[E+(t) − E−(t)]dt , which, in the limit δ → 0, is

equal to the pulse area �(+∞).
With increasing δ, |tna± − tP | and Qadiab(tna± ) decrease,

being equal in the nearly resonant system b to |tna± −
tP | ∼ 0.15 ps and Qadiab(tna±) ∼ 1.2. Nonadiabatic transfer
of population from the adiabatic level 
−(t) to the adiabatic
level 
+(t) occurs in two steps around tna± , but with a
less-pronounced sudden character.

The maximum value of θ (tP ) decreases when |δ| increases,
and for a detuning such as |δ| > 2�(tP ) or θ (tP ) < π

4 , as in
cases c, d, and f , the times tna± do not exist. The maxima
of the parameter Qadiab(t) become smaller and appear during
the pulse at t± (|t± − tP | < τL), with t± = tP ± 1√

4 ln 2
τL[1 +

4 �(tP )2

e δ2 ]. As a result, the transfer becomes more adiabatic, with

a very low population P
(+)
adiab(t) transferred to the adiabatic level

033419-11
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+(t) at t ∼ t−. In addition, this population transferred to the
upper adiabatic level 
+(t) returns back to the lower adiabatic
level 
−(t) at t ∼ t+. Almost no population remains in the
excited level after the pulse.

For a sufficiently high |δ| value, the evolution of the
population transfer becomes completely reversible and the
population in the excited adiabatic level is such as |β(tP −
δt)| = |β(tP + δt)|, as observed in systems d and f . The
population of the adiabatic excited level can be calculated
in the perturbative approximation, leading to P

(+)
adiab(t) ∼

[ θ̇ (t)
2[E+(t)−E−(t)] ]

2 = [Qadiab(t)]2 (compare rows 2 and 4 in Fig. 7
for system d). For a very large detuning, |δ| � �(tP ), the
population of the adiabatic excited level is maximum at t = t±
with

P
(+)
adiab(t±) = 4 ln 2

e

[
�(tP )

δ2τL

]2

= 1

4 e ln 2

[
�(tP )

δ

δω

δ

]2

. (22)

For off-resonant excitation, |δ| > δω, the maximum popu-
lation in the adiabatic level is very small [P (+)

adiab(t±) � 1],
decreasing with |δ| more rapidly than the maximum population
in the diabatic levels, equal, in the perturbative limit, to

Pdiab(tP ) =
[
�(tP )

δ

]2

. (23)

To summarize, the three parameters δ, δω, and �(tP )
characterizing the excitation of a two-level system by a
Gaussian pulse fully determine the dynamics. The nearly
resonant or off-resonant character of the process depends on
the ratio δ/δω. For a nearly resonant excitation of a level
|v′〉 lying within the pulse bandwidth (|δv′,v′′

0
| < δω) and in

the weak-field limit �(tP ) � δω, the population transferred to

this level is |bv′ (t → ∞)|2 = 8π ln 2[�(tP )
δω

]2[ E(δv′ )
E(δ=0)

]2. Nearly
resonant excitation acquires a strong-field character as soon
as �(tP ) � δω; a highly nonadiabatic transfer then occurs
in the wings of the pulse, at tna±. The final population
transfer strongly depends on the value of the phase difference
accumulated in the adiabatic wave functions 
P

± (t) during
the time interval [tna−, tna+]. This phase difference is at the
origin of the Rabi oscillations observed in the population of
the diabatic levels |g〉 and |e〉. For off-resonant excitation,
the evolution can be described in the perturbative limit if
�(tP ) � δ; it results in a completely adiabatic dynamics, with
no final population transfer, the population of the diabatic
levels following the variation [f (t)]2 of the pulse intensity.

Let us emphasize that the conclusions reported above are
valid for a pulse with sufficiently slow time dependencies
in both the electric field envelope and the instantaneous
frequency. In particular, they are not valid for a spectrally
cut Gaussian pulse [25]. In this case, rapid variations of
the instantaneous frequency around the pulse maximum are
responsible for a nonadiabatic character of the off-resonant
excitation and the off-resonant levels remain populated after
the pulse [26].

5. Excitation of molecular wave packets

Some information on the adiabaticity of the population
transfer in the optimal multilevel system can be obtained by
considering directly the excitation of molecular wave packets

in the lower and excited electronic states and reducing the
WP description to a two-level problem. Indeed, as we are
considering pulses with duration (∼100 fs) much larger than
the vibrational period of the considered levels, it is possible
to ignore the vibrational motion during the laser excitation,
that is, to study the excitation process in the impulsive
approximation [27].

In the time-dependent Hamiltonian describing the laser
excitation of a diatomic molecule in the WP approach, given
in Eq. (B2),

Ĥ =
[

T̂ + V g(R) + h̄ωL

2
1
2Wge(t)

1
2Weg(t) T̂ + V e(R) − h̄ωL

2

]
, (24)

we neglect the kinetic energy T̂ . Introducing the difference
between the two dressed potentials

�L(R) = V e(R) − V g(R) − h̄ωL

and ignoring the mean potential

2V (R) = V e(R) + V g(R),

which introduces only an R-dependent phase factor, we
can consider, at each internuclear distance R, the two-level
Hamiltonian in the diabatic representation [8],[

− 1
2�L(R) 1

2Wge(t)
1
2Weg(t) + 1

2�L(R)

]
, (25)

and analyze the adiabaticity of the excitation process by
calculating the R- and t-dependent function Qadiab(R,t)
similarly to the function Qadiab(t) defined in Eq. (21).

Figure 8 shows Qadiab(R,t) as a function of R and t . For a
pulse with a carrier frequency ωL resonant with the transition
a3�+v′′

0 = 37 → b3�v′
0 = 43, the dressed potentials cross

each other [�L(Rc) = 0] at Rc = 10.53 a.u. The adiabatic
condition is broken at the beginning and at the end of the
Gaussian pulse, t = tP − τL = 0.48 ps and t = tP + τL =
0.72 ps (small laser intensity). It is also broken at internuclear
distance close to Rc (small detuning). This determines both
the times where population can be transferred from the
ground electronic state to the excited electronic state and the
spatial location of the transferred population. For the studied
unchirped pulse, population transfer occurs around Rc and in
the wings of the pulse.

C. Influence on the dynamics of the far-from-resonance levels

We pay now particular attention to the contribution to the
dynamics coming from far-from-resonance levels. We, first,
analyze the dynamics of excitation in a multilevel system,
including both nearly resonant and far-from-resonance excited
levels bv′ while keeping only the single level av′′

0 in the lower
electronic state. We then introduce all the lower [v′′ = 0–204]
levels of the optimal set to obtain a complete view of the
modifications of the dynamics of close to the resonance levels
induced by far-from-resonance levels.

1. A single level in the lower electronic state

Starting with a single v′′
0 = 37 level in the ground electronic

state, we progressively grow the basis set in the excited state,
by adding either nearly resonant levels, i.e., close to the
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FIG. 8. (Color online) Criteria of adiabaticity for the excitation of
a molecular wave packet by a Gaussian pulse: Variation of Qadiab(R,t)
(Sec. IV B 5) as a function of the internuclear distance R (in a.u.)
and of the time t (in ps). The condition for an adiabatic evolution
is broken near Rc = 10.5 a.u. and for times corresponding to the
beginning and the end of the Gaussian pulse. Nonadiabatic effects
are more important for the low-intensity pulse Wπ

L /120 (upper panel)
than for the high-intensity pulse Wπ

L (lower panel).

oblique transition, or far-from-resonance levels, i.e., close to
the vertical transition.

In the upper row [Figs. 9(a) and 9(b)], we compare the two-
level system that consists only of the two resonant levels [v′′

0 =
37,v′

0 = 43] to the small five-level system [v′′
0 = 37,v′ =

43,194–196] containing the two resonant levels and the three
far-from-resonance levels v′ = 194–196. As expected, for
the resonant two-level system excited by a π pulse, a total
exchange of population is observed. For the basis set b, a
very low population is transferred during the pulse to the three
additional levels, less than 1%. Nevertheless, the presence of
these levels modifies completely the dynamics of the popula-
tion in the v′

0 = 43 resonant level: Only 29% of the population
is transferred in this level at t = tP , instead of 50% in the
two-level system, and, in addition, the population disappears
almost completely (0.012%) at the end of the pulse. In fact, for
the two v′′

0 and v′
0 levels, which are degenerate in the diabatic

representation [Eq. (C3) with �e
v′=43,v′

0
= 0 Eq. (11)], the

maximum coupling strength, �v′
0=43,v′′

0
= 2.10 × 10−4 a.u., is

of the same order of magnitude as the second order contribution
[�v′=195,v′′

0
]2/�e

v′=195,v′
0
= 3.4 × 10−4 a.u. corresponding to

the vertical transition v′ = 195. This modifies significantly the
energies of the instantaneous adiabatic levels connected to the
resonant v′′

0 = 37 and v′
0 = 43 diabatic levels and, therefore,

the phase difference accumulated between tna− and tna+ in
the adiabatic wave functions 
P

± [Eq. (22)] or, during the
pulse, the beating between the probability amplitudes of the
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FIG. 9. (Color online) LbyL calculation: Influence on the dy-
namics of the far-from-resonance b3�v′ levels, when only the level
v′′

0 = 37 is introduced in the lower state. Variation with time (in
ps) of the populations of the vibrational levels b3� v′ with v′ = 43
[thick continuous orange (gray) line], v′ = 42 [thin continuous orange
(gray) line], v′ = 44 [thin dashed orange (gray) line], v′ = 195 (thick
black line), v′ = 194 (thin black line), v′ = 196 (thin dot-dashed
black line) and of the initially populated vibrational level a3�+

v′′
0 = 37 [dashed red (black) line]. Some populations have been

multiplied by the factor indicated in the figure. The pulse maximum
at tP [vertical continuous blue (black) line] and duration indicated by
the vertical dashed blue (black) lines satisfies the π -pulse condition.
Different basis sets [v′′, v′] are used. The difference between left-hand
and right-hand panels of the same line is the absence or presence of
far-from-resonance levels. Upper line, (a) [v′′

0 = 37, v′
0 = 43] and

(b) [v′′
0 = 37,v′

0 = 43, and v′ = 194–196]; middle line, (c) [v′′
0 =

37, v′ = 42–44] and (d) [v′′
0 = 37, v′ = 42–44 and v′ = 194–196];

lower line, (e) [v′′
0 = 37, v′ = 13–60] and (f) [v′′

0 = 37, v′ = 0–218].

resonant levels (Sec. IV B 4). This explains qualitatively the
strong changes in the dynamics of the excitation process.

In the middle row [Figs. 9(c) and 9(d)], the two nearly
resonant levels v′ = 42 and v′ = 44 are added to each above
described basis set. For these levels, the overlap integrals with
the v′′

0 level (0.029 and 0.031) are nearly equal to the overlap
integral (0.034) of the resonant transition, and the detunings are
small ±0.0002 a.u. In the system [v′′

0 , v′ = 42–44] introducing
only the nearly resonant levels, the population transferred to
the excited state is shared between the three excited levels
with a large total transfer (82%). When the three levels close
to the vertical transition v′ = 194–196 are added, there is a
low transfer (3.3%) to the resonant v′

0 = 43 level but a larger
transfer (12.5% and 15.6%) to the nearly resonant levels v′ =
42 and v′ = 44. Here also the introduction of the far-from-
resonance levels modifies the excitation dynamics of the nearly
resonant levels. In particular, there is a strong decrease in the
population transferred to the excited electronic state at the end
of the pulse, 31.4% instead of 82.3%, and an important change
in the branching ratios in the population of the nearly resonant
levels.
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In the lower row [Figs. 9(e) and 9(f)], larger basis sets
are introduced in the excited state. The set in Fig. 9(e) [v′′

0 =
37, v′ = 13–60] consists on all the excited levels remaining
populated after the pulse (Fig. 6) in the WP calculation.
The dynamics of excitation of the nearly resonant levels
v′ = 42–44 is qualitatively the same as in the set in Fig. 9(c),
with a total population transfer equal to 78.2%, but with a
change in the branching ratios. This shows that, in this group
of v′ = 13–60 levels, the nonadiabatic dynamics (Sec. IV A 2)
is dominated by the three nearly resonant levels. For the set
in Fig. 9(f) [v′′

0 = 37, v′ = 0–218] introducing a still larger
basis in the excited state, the dynamics of the excitation of
the nearly resonant levels differs from that one observed for
the set in Fig. 9(d) [v′′

0 = 37, v′ = 42–44, 194–196]. The final
population in the nearly resonant levels v′ = 42–44 decreases
from the value 31.4% to the value 13.5%, showing that
far-from-resonance levels other than the v′ = 194–196 ones
contribute to the dynamics. For the two basis sets in Figs. 9(e)
and 9(f), almost all the population is transferred to the excited
electronic state, 93.1% and 98.24%, respectively [see the low
value of the final population of the initial level v′′

0 = 37), this
population being mainly distributed in the nearly resonant
levels v′ ∼ 42–44 for the set in Fig. 9(e)], but in lower levels
v′ ∼ 36–40 for the set in Fig. 9(f).

2. Several levels in the lower electronic state

In this section we incorporate all the levels v′′ = 0–204
of the lower electronic state included in the optimal basis
set (Sec. IV A 1) and we analyze how the far-from-resonance
levels modify the excitation dynamics. We consider the basis
sets [v′′ = 0–204, v′ = 13–60] and [v′′ = 0–204, v′ = 0–218].
The first set encompasses only the excited levels which remain
populated after the pulse in the WP treatment, whereas the
second one is the optimal set. In Fig. 10 we show the computed
time evolution of the total populations of the levels v′ = 13–60
[Fig. 10(a)] and of the resonant level v′

0 = 43 [Fig. 10(b)]. We
display the final distributions of population in the vibrational
levels of the excited [Fig. 10(c)] and the ground [Fig. 10(d)]
electronic states.

At the beginning of the pulse, for t � 0.53 ps, when the
pulse intensity increases, weak population recycling occurs
and the contribution to the dynamics of far-from-resonance
levels is not very important. When the pulse reaches its max-
imum intensity at t = tP = 0.6 ps, the population exchange
between the lower and excited electronic states becomes more
important and noticeable changes become observable in the
Rabi oscillations occurring either in the population of the
resonant level v′

0 = 43 or in the total population of the levels
v′ = 13–60. When far-from-resonance levels are introduced
in the basis set, the total population transferred during the
pulse to the levels v′ = 13–60 is smaller; nevertheless, there
is no significant change in the total population transferred
to the excited state (1.9% instead of 1.8%) [Fig. 10(a)].
Concerning the Rabi oscillations of the population of the
resonant level v′

0 = 43 [Fig. 10(b)], some modifications occur
for t > tP and half of the population remaining in this level is
transferred back to the ground state (0.04% instead of 0.11%).
We remind the reader that a similar decrease in the population
of the resonant level induced by including far-from-resonance
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FIG. 10. (Color online) LbyL calculations: Influence on the
dynamics of far-from-resonance b3� v′ excited levels, when all the
levels a3�+ v′′ of the set C are introduced in the lower state. Basis sets
[v′′ = 0–204, v′ = 13–60] [orange (gray) lines] and [v′′ = 0–204,
v′ = 0–218] [red (black) lines]. The pulse [vertical continuous and
dashed blue (dark) lines] satisfies the π -pulse condition. Left column:
Variation with time (in ps) of the population of the b3� v′ levels
(in percentage); panel (a): total population in the levels v′ = 13–60;
panel (b) population in the resonant level v′

0 = 43. Right column:
Final distribution of population (in percentage) in the excited levels
v′ [panel (c)] and lower levels v′′ [panel (d)] with a maximum, for v′′

0 ,
equal to 90.9 and 76.0 for the first and second basis sets, respectively.

levels has already been observed in the simple LbyL models
discussed in Fig. 9). Concerning the final distribution in the
excited-state population [Fig. 10(c)], the population is, on
average, shifted toward slightly higher v′ values. In the ground
state [Fig. 10(d)], the population is spread over a larger energy
domain, with a smaller population transferred back to the initial
level v′′

0 = 37 (76.0% instead of 90.9%).

D. Blockade of the excitation due to a quasidegenerate
level in the lower electronic state

When the basis set [v′′
0 = 37, v′ = 0–218] is used [Figs. 9(e)

and 9(f)], the resonant level v′
0 = 43 population does not

exhibit a large number of Rabi oscillations, contrary to what
is observed in Fig. 5 using the optimal set. Furthermore, there
is a strong transfer of population to the excited electronic state
(98.2%), substantially differing from the weak transfer (1.9%)
obtained with the optimal set. In this section, we analyze
in more detail the specific role of the levels of the ground
electronic state, especially those which are quasidegenerate
with the initially populated one. In the energy range close
to this initial level, the spacing between consecutive bound
levels is, indeed, much smaller than the laser bandwidth
δω = 120 cm−1. All bound levels with v′′ � 34 and all
continuum states with an energy up to 115 cm−1 (with the
chosen grid, discretized scattering levels up to v′′ = 134) are
such that |�g

v′′,v′′
0
| < δω.

To analyze the excitation dynamics from a group of
quasidegenerate levels, we consider in Appendix D a simple
model describing the excitation of a single sublevel from an
N -fold degenerate level, which admits an analytical solution.
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FIG. 11. (Color online) Influence of a quasidegenerate level
in the ground electronic state. Evolution of the populations as a
function of time (in ps), under a pulse (continuous and dashed
blue vertical lines) satisfying the π -pulse condition W = Wπ

L .
The results obtained using the LbyL method are compared to the
analytical formulas [Eq. (D5)] describing the excitation from an
N -fold degenerate level [thin continuous red (black) lines], where the
initial population is in a single level (A1) of the manifold, the other
N − 1 sublevels (Ai) being unpopulated; the excited level (B1) is
resonantly excited. Panel (a), N = 3: basis set [v′′ = 36–38,v′

0 = 43].
Panel (b), N = 4: basis set [v′′ = 36–39,v′

0 = 43]. Panels (c)–(e),
N = 11: basis set [v′′ = 32–42,v′ = 43]. Initially populated level
a3�+v′′

0 = 37 (double dot-dashed black line) and resonantly excited
level b3�v′

0 = 43 (thick continuous light gray line). Nonresonant
a3�+ levels described by the same formula in the analytical model:
v′′ = 36 [medium-thick dot-dashed orange (gray) line]; v′′ = 38
[medium-thick dashed orange (gray) line]; v′′ = 39 [medium-thick
continuous orange (gray) line].

The comparison with a nondegenerate two-level system shows
that, in the high-field regime, the population transfer is divided
by N , whereas the remaining population is equally distributed
among the N sublevels of the degenerate lower level. When
the number N increases, the transfer of population toward the
excited level decreases: There is a blockade of the excitation
induced by the degeneracy of the lower level, with no transfer
at all for N → ∞.

As the first example we consider two basis sets, [v′′ =
36–38,v′ = 43] and [v′′ = 36−39, v′ = 43], and the π pulse
resonant with the transition v′′

0 = 37 → v′
0 = 43 [Figs. 11(a)

and 11(b)]. For the set in Fig. 11(a) where N = 3, the final
population transferred to the v′

0 level is equal to 0.0556. The
populations of the initial v′′

0 level and of the other two ground
levels are respectively equal to 0.1313 and 0.4065. For the set
in Fig. 11(b) with N = 4, no population remains after the pulse
in the excited level v′

0, the effective pulse area being equal to√
N
2 π = π . Simultaneously, the four ground-state levels are

equally populated (population 1
4 ). At the maximum of the

pulse, when
√

N
2 �(tP ) = π

2 , the population in the excited level
is equal to 1

N
= 1

4 . In the initially populated level v′′
0 it is equal

to 9
16 and in the other three ground levels to 1

16 . The evolutions
of the populations in the quasidegenerate case agree almost

perfectly with the N -fold degenerate model with N = 3 and
N = 4.

More realistic results, obtained by using the LbyL approach
with the basis set [v′′ = 32–42,v′

0 = 43], are also presented
[Figs. 11(c)–11(e)], together with comparable results of the an-
alytical model. For the ground levels |�g

v′′,v′′
0
| � 0.000027 a.u.

and the overlap integrals vary in the range 0.018–0.040.
For this system, which includes an 11-fold quasidegenerate
lower level, the dynamics of excitation is similar to that of a
degenerate level with N = 11. The effective area for the pulse
is

√
Nπ = 3.3π , and, during the pulse, the population of the

resonantly excited level oscillates between 0 and 1
N

= 0.09.
Simultaneously, the population is redistributed among the
quasidegenerate levels of the ground electronic state.

To summarize, in the strong-field excitation from a level
close to the dissociation threshold, the high density of levels in
the initial state is at the origin of a blockade of the excitation
process. Simultaneously, the increase of the effective Rabi
frequency explains the oscillations occurring during the pulse
in the population of the quasiresonant levels. Let us remark
that this phenomenon is similar to the ionization suppression
occurring in the Rydberg atom ionization by an intense laser
pulse. When the N initial discrete levels are exactly degenerate,
only 1/N of the initial population ionizes in a time divided by
the factor N [28].

Finally, we remark on the influence of the far-from-
resonance excited levels on the excitation from quasidegener-
ate lower levels. As expected, the basis set [v′′ = 0–204, v′

0 =
43] yields a blockade of the excitation: the final population
of the initial level v′′

0 = 37 is large, amounting to 90.6%
and, simultaneously, a very weak population, equal to 1.0%,
is transferred to the resonant level v′

0 = 43. When adding
some far-from-resonance excited levels, in the basis set [v′′ =
0–204, v′ = 43,194–196], one observes, simultaneously, a
blockade of the excitation and an important redistribution of
population within the ground state: The population transferred
to the resonant level v′

0 = 43 is almost negligible (1%), but
78.5% of the population is redistributed among the levels 20 �
v′′ � 47 and 20.5% in the continuum, mainly in scattering
levels with an energy smaller than 20 cm−1. Here also, the
contribution of the far-from-resonance levels v′ = 194–196 is
crucial. These levels are only weakly populated during the
pulse, but their population is recycled back to a large number
of vibrational levels of the ground electronic state.

V. DISCUSSION AND PERSPECTIVE; TRAIN OF PULSES

In this paper, we have explored the possibility of enhancing
the rate of formation of stable RbCs molecules in the absolute
ground level Rb(5s)Cs(6s) X1�+′′ = 0. More precisely, we
have analyzed the excitation by a single unchirped Gaussian
pulse of molecules already formed in weakly bound levels
of the Rb(5s)Cs(6s) a3�+ state, after photoassociation of
ultracold Rb and Cs atoms followed by spontaneous radiative
decay. When the final level of the excitation is a spin-mixed
level, for example, a level of symmetry 0+ or 1, it will be
possible to transfer optically, in a second step, the population
from this electronic excited level to the absolute ground level.
Restricting the description to uncoupled electronic states in
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the Hund’s case a coupling scheme, we have investigated
the possibilities offered by the presently widely developed
femtosecond laser sources to transfer efficiently the population
from the excited a3�+v′′

0 = 37 level toward the b3�v′
0 = 43

level.
The dynamics of the photoexcitation process is modeled

with the WP method, calculating the time evolution of the
wave packets propagating along the electronic states coupled
by the laser pulse. This employed nonperturbative method
allows us to analyze dynamics all the way from the low- to
the high-intensity regime, the latter being the π pulse for the
resonantly driven v′′

0 = 37 → v′
0 = 43 transition. We have

also developed a LbyL description and employed a variety
of subsets of vibrational levels in numerical simulations. The
comparison between various restricted LbyL calculations and
with the full-scale WP results allowed us to qualitatively
understand the complex evolution of the population of the
multitude of vibrational levels and to identify the specific
influence of these levels on the dynamics.

In the perturbative limit, only the quasiresonant levels lying
within the bandwidth of the intensity distribution are excited.
For a not-too-short duration of the pulse τL corresponding
to a bandwidth δω smaller than the energy spacing of
the vibrational levels in the excited electronic state, the
excitation process is selective. Conversely, the efficiency of
the population transfer is very low.

With increasing intensity, more levels are excited, but the
excitation rates remain very small and the dynamics becomes
more adiabatic. We have shown that, in the strong-field regime,
i.e., for the π pulse, far-from-resonance excited levels with
high Franck-Condon factors are populated during the pulse.
At the maximum of the pulse intensity, the population of
the levels excited through a vertical transition at the outer
turning points of their wave functions is much larger than
the population of the quasiresonant levels. Because of the
adiabatic character of the excitation of far-from-resonance
levels, the time dependence of their population follows
the smooth evolution of the pulse intensity, notwithstanding
the high value of the Rabi frequency, and after the pulse no
population is retained in these levels. Nevertheless, these levels
contribute to the excitation process; in particular, they give rise
to a large population recycling and to an important population
redistribution in the ground electronic state. The individual
contributions to the amplitude of population of a particular
level arising from the other levels are very intricate, making
the analysis and, therefore, the control of the excitation process
with unchirped pulses in the high-field regime very difficult.
It is worth noticing that quantum control of molecular wave
packets could still be possible in the strong-field regime [29],
but in very specific conditions: for “vertical” transitions with
high Franck-Condon factors, not involving quasidegenerate
lower levels, and imposing special shape requirements to the
standing edge of the pulse [30], in order to avoid population
redistribution in the lower state.

Furthermore, for the system under study, the initial level
av′′

0 = 37 lies very close to the dissociation threshold, where
the density of levels is very high. We have shown that this
situation is at the origin, in the high-field regime, of the
excitation blockade. A simple model describing the resonant
excitation of a single level from an N -fold degenerate level is

developed, which reproduces comparable LbyL calculations
well. In the strong-field regime, the excited level population
is governed by a pulse area larger by a factor of

√
N than the

real area of the pulse and its amplitude is divided by N . This
explains the oscillations with a low amplitude observed, during
the pulse, in the population of the resonantly excited level.
Due to this blockade phenomenon, high intensity and large
bandwidth pulses are poorly suited for gaining high excitation
rates.

In order to increase the population transfer to the resonant
level v′

0 = 43 while conserving the selectivity provided by
the low-field regime, we have explored the possibility of
using a weak intensity train of ultrashort coherent pulses.
We recapitulate main features of such trains in the time
and frequency domains in Appendix E. Previously, coherent
excitation of a two-level system by a train of short pulses
has been described analytically [31]. Transient coherent
accumulation for two-photon absorption via an intermediate
level has been demonstrated in atomic Rb [11]. Application
to efficient selective vibrational population transfer between
electronic states of a diatomic molecule has been discussed by
Araujo [32].

In a preliminary study, we analyzed the dynamics of
excitation by a train of pulses in the perturbative regime.
Each individual pulse has the Gaussian shape of duration
τL = 0.12 ps and of maximum coupling strength Wπ

L /120.
The repetition time is Trep = 0.8 ps, slightly smaller than the
vibrational period T vib

e,v′
0

in the excited state (Sec. III A) and with
a vanishing pulse-to-pulse carrier-envelope-offset phase shift
�φce. We performed calculations both in the WP and the LbyL
approaches. In the WP calculations, the final state at the end
of each individual pulse is taken as the initial condition for the
following pulse. The total population transferred to the excited
electronic state b3� and its distribution among the different
v′ levels during N = 15 pulses are shown in Fig. 12 (upper
right panel). We also carried out LbyL calculations using the
basis set [v′′

0 = 37, v′ = 42–44]. The computed time variation
of the population in the excited levels is presented in Fig. 12
(left panels). The LbyL calculations reproduce perfectly the
WP results, the small LbyL basis set clearly being sufficient
for low-intensity pulses.

Pulse after pulse, there is an accumulation of the total
population transferred to the excited electronic state b3�.
When the number of pulses, N , increases, the distribution
of population among the excited levels bv′ becomes more
selective, with an accumulation of population in the resonant
level v′

0. A given pulse transfers to the level bv′ an probability
amplitude which interferes with the already present probability
amplitude, transferred by the previous pulses. The nature
of the interferences depends on the phase exp[iTrepδv′,v′′

0
]

involving the detuning of the considered bv′ level [32]. For
the resonant level bv′

0 the interferences are constructive and
the population increases with the growing number of pulses.
For other vibrational levels, due to the mismatch in this phase,
the population will oscillate with N , without experiencing
accumulation. This increase of the selectivity of the excitation
with the number of pulses is a signature of the comblike
structure of the energy spectrum E(ω) [Eq. (E2)] of the pulse
train. The frequency spectrum consists of equally spaced
“teeth,” with a spacing proportional to the repetition frequency
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FIG. 12. (Color online) Panels (a)–(c): Excitation of the resonant
transition a3�+ v′′

0 = 37 → b3�v′
0 = 43 in the low-field regime by

successive Gaussian femtosecond pulses with duration τL = 0.12 ps,
repetition time Trep = 0.8 ps, and maximum coupling strength
Wπ

L /120. Variation with time (in ps) of the population of the
excited electronic state b3� (thick black line), of the resonant level
b3�v′

0 = 43 [thin red (black) line], and of the quasiresonant levels
v′ = 42 [thin orange (gray) line] and v′ = 44 (thin black dashed
line) levels. Panel (a): Train of N = 10 coherent pulses in the LbyL
approach with the basis set [v′′

0 = 37, v′ = 42–44]. Panel (b): Train of
N = 10 pulses in the WP approach, where the lower and excited wave
packets obtained in the middle of the interval between the pulses Pi

and Pi+1 are taken as initial wave packets for the pulse Pi+1. Panel (c):
Same as for panel (a) but for a train ofN = 120 pulses, corresponding
to an effective π pulse. Panel (d): Single picosecond π pulse with
duration 120τL = 14.4 ps and maximum coupling strength Wπ

L /120
in the LbyL approach with the same basis set.

T −1
rep , an intensity proportional to N 2 and a width narrowing as

N−1.
When the number of pulses becomes equal to 120, the total

population initially in the v′′
0 = 37 level is transferred to the

resonant excited level v′
0 = 43. Let us remark that the total

pulse area for the train with 120 pulses, each with a pulse
area equal to π/120, amounts to π . This train of pulses is,
thus, equivalent to a single π pulse in the perturbative regime.
If the number of pulses continues to increase, the population
cycles back to the initial level. The total duration of the pulse
train amounts to 96 ps, much smaller than the lifetime of the
resonant level, which is smaller than 30 ns [17].

To succeed in controlling the dynamics of photoexcitation
with unchirped femtosecond lasers, it seems necessary to
employ low-intensity pulses. The radiative lifetime of the
excited level can be disregarded if the total duration Ttot =
NTrep of the pulse train is sufficiently small. Consequently,
the repetition rate has to be as large as possible. We notice the
technological developments aimed at increasing the repetition
rates in the train of femtosecond or a few picosecond
pulses using acousto-optic devices are in progress. Repetition
frequencies up to 50 GHz were obtained with electro-optic

phase-modulator shaping of a picosecond laser [33], much
faster than those of the order of 100 MHz obtained from a
Kerr lens mode-locked femtosecond Ti-sapphire laser [11] or
of 100 kHz for a regenerative amplifier seeded by a Mira
oscillator [34].

For completeness, we mention here that another way to
obtain high transfer rate with high selectivity relies on the use
of a single pulse in the picosecond domain with a sufficiently
narrow bandwidth. To illustrate this point, we computed
excitation by a single Gaussian pulse, resonant with the
transition v′′

0 → v′
0, with maximum coupling W ′

L = Wπ
L /120

and duration τ ′
L = 120 × τL = 14.4 ps (Fig. 12, lower right

panel). Calculations were done in the LbyL method using the
basis set [v′′

0 = 37, v′ = 41–44]. The bandwidth of this pulse,
equal to δω/120 = 1 cm−1, is sufficiently narrow to include
only the single v′

0 level within its bandwidth. Its pulse area,
proportional to τ ′

L × W ′
L [Eq. (16)] is equal to π . Therefore,

for this pulse, the population transfer occurs only toward
the resonant level and is complete. The corresponding laser
sources are not numerous but are presently developed.

Let us emphasize that unchirped femtosecond pulses have
been considered throughout this paper. Methods for executing
robust, selective, and complete transfer of population between
a single level and preselected superpositions of levels are
presently rapidly developing, both theoretically [35] and
experimentally [36]. Such transfers are obtained through
adiabatic passage with intense femtosecond pulses, shaped
in amplitude and phase.

We, finally, mention that the possibilities offered by the
implementation of a STIRAP process using femtosecond
pulses, instead of the currently used pulses in the microsecond
domain, remain to be investigated. Ultimately, one would
want to produce absolute ground-state molecules from weakly
bound molecules formed after photoassociation and sponta-
neous radiative decay. Keeping this goal in mind, one may
want to investigate schemes [37] where a coherent train of
weak pump-dump pairs of shaped femtosecond pulses are
used. In that scheme each pair of pump-dump pulses drives
narrow-band Raman transitions between vibrational levels,
avoiding spontaneous emission losses from the intermediate
state.
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APPENDIX A: COMPLETE SET OF VIBRATIONAL STATES
FROM THE MFGH METHOD

The MFGH method is based on the Fourier grid Hamil-
tonian method (FGH) with the introduction of an adaptive
coordinate, related to the local de Broglie wavelength, to
represent the interatomic distance R describing the vibration
of the diatomic molecule in the potential V (R). The employed
spatial grid has a few points N but a large extent L [12].
The Hamiltonian Hmol is represented on this grid using a
sine expansion rather than the usual Fourier expansion, in
order to avoid the occurrence of ghost levels [13]. For a
single channel problem, the diagonalization of the Hamilto-
nian matrix provides a complete set of N vibrational wave
functions ϕv(R) (0 � v � N − 1) describing bound levels and
discretized continuum states normalized to unit on the grid. As
discussed in Ref. [17], only a small number of scattering wave
functions, called physical scattering levels, have a realistic
behavior throughout the grid. The other ones, which have a
high probability density at short internuclear distance, ensure
the completeness of the set for 0 � R � L. The eigenfunctions
ϕv(R) are orthogonal within the box,∫ L

0
ϕv1 (R)ϕv2 (R)dR = δv1,v2 . (A1)

They satisfy the following closure relations, valid for R �
L, R′ � L:

N−1∑
v=0

ϕv(R) × ϕv(R′) = δ(R − R′). (A2)

In the present paper, the same spatial grid is used for both
a3�+ and b3� electronic states. It contains N = 511 points
with length L = 1258 a0. The lower and excited electronic
states possess 48 and 219 bound vibrational levels. The
physical scattering levels describe a very small energy domain,
less than 0.01 cm−1, above the dissociation limit located at
E = 0. The remaining ones, the unphysical scattering levels,
cover a large energy range up to 35 000 cm−1.

APPENDIX B: TIME-DEPENDENT STUDY OF
PHOTOEXCITATION IN A DIATOMIC MOLECULE

1. Laser-coupled electronic states: Wave-packet description

The evolution of the wave packets is studied in the RWA
[38], by introducing a frame rotating at the angular frequency
ωL/2π , which allows one to eliminate rapidly oscillating terms
in the system of coupled equations [Eq. (8)]. The new radial
wave functions corresponding to the lower V g and the excited
V e potentials are defined by


g(R,t) = χg(R,t) exp(−iωLt/2),
(B1)


e(R,t) = χe(R,t) exp(+iωLt/2).

Neglecting the high-frequency components ∼ ± 2ωL/2π ,
one obtains the following coupled radial equations:

ih̄
∂

∂t

(

g(R,t)


e(R,t)

)

=
(

T̂ + Vg(R) 1
2Wge

1
2Weg T̂ + Ve(R)

) (

g(R,t)


e(R,t)

)
, (B2)

where T̂ is the kinetic energy operator and the potentials
dressed by the laser frequency Vg(R) and Ve(R), are given
by

Vg(R) = V g(R) + h̄ωL/2, Ve(R) = V e(R) − h̄ωL/2.

(B3)

Expanding, at each time t , the wave packets 
g(R,t) and

e(R,t) on the stationary vibrational levels ϕg,v′′ and ϕe,v′

of the g and e electronic states [Eq. (13)], we obtain the
instantaneous amplitude of population, av′′ (t) [respectively,
bv′ (t)], in the stationary levels g v′′ (respectively, e v′), with
energies Eg,v′′ (respectively, Ee,v′ ):

av′′ (t) exp

[
−i

Eg,v′′

h̄
t

]
=

∫ L

0
ϕg,v′′ (R)
g(R,t)dR,

(B4)

bv′ (t) exp

[
−i

Ee,v′

h̄
t

]
=

∫ L

0
ϕe,v′ (R)
e(R,t)dR.

2. Laser-coupled vibrational levels: Level-by-level description

In the LbyL description, the time-dependent wave function

(t) is decomposed on the sets g

n
(respectively, em), with

gn (respectively, em) wave functions ϕg,v′′ (respectively, ϕe,v′ )
describing stationary vibrational levels of the ground and
excited electronic states. In the interaction picture [38], the
expression of the wave packets created by the laser pulse on
the ground and excited states are given by Eq. (10).

The time-dependent Schrödinger equation governing the
time evolution of the ground av′′ (t) and excited bv′ (t) probabil-
ity amplitudes is equivalent to the system of (gn+em) coupled
equations,

.
av′′ = − i

h̄

∑
v′∈em

bv′ exp

[
− i

h̄
(Ee,v′ − Eg,v′′ )t

]
〈ϕg,v′′ |Ŵge|ϕe,v′ 〉,

.

bv′ = − i

h̄

∑
v′′∈g

n

av′′ exp

[
− i

h̄
(Eg,v′′ −Ee,v′ )t

]
〈ϕe,v′ |Ŵeg|ϕg,v′′ 〉.

(B5)

In this system, there appear only the off-diagonal matrix
elements of the coupling Ŵge(t) = −DgeE0f (t) cos[ωLt].
In the RWA approximation, when the high-frequency
[(Ee,v′ − Eg,v′′ )/h̄ + ωL] ∼ 2ωL and [(Eg,v′′ − Ee,v′ )]/h̄ −
ωL ∼ −2ωL can be neglected, the system reduces to

.
av′′ = − i

2h̄

∑
v′∈em

bv′ exp

[
i

h̄
δv′,v′′ t

]
〈ϕg,v′′ |Wge|ϕe,v′ 〉,

(B6)
.

bv′ = − i

2h̄

∑
v′′∈g

n

av′′ exp

[
− i

h̄
δv′,v′′ t

]
〈ϕe,v′ |Weg|ϕg,v′′ 〉.

Wge(R,t) = Weg(R,t) is defined in Eq. (9) and δv′,v′′ is equal
to

δv′,v′′ = h̄ωL − [Ee,v′ − Eg,v′′ ]. (B7)
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If the R variation of the electric dipole moment Dge(R) is
neglected, introducing D = Dge(R → ∞), one has

〈ev′|Weg(R,t)|gv′′〉 = 〈gv′′|Wge(t)|ev′〉 = −DE0f (t)〈v′|v′′〉
= �v′,v′′f (t). (B8)

We solved the differential equations (B6) using the function
NDSolve of the Mathematica software system.

The energies and wave functions for the levels v′′ and v′, as
well as the overlap integrals 〈v′|v′′〉, were obtained by use of
the MFGH method (see Appendix A).

3. Wave-packet and level-by-level descriptions

Using the expansion Eq. (13) of the wave packets χg(R,t)
and χe(R,t) in terms of the stationary wave functions, and
accounting for the closure relations satisfied by the wave
functions ϕg,v′′ and ϕe,v′ [Eq. (A1)], one obtains a system
of 2N first-order differential equations for the probability
amplitudes of vibrational states av′′ (t) and bv′ (t) involved in
the WP description. This system is very similar to the system
Eq. (B5) satisfied by the probability amplitudes av′′ (t) and
bv′ (t) in the LbyL description.

The difference between the two systems arises only from
the number of involved amplitudes: 2N for the WP description
and (gn + em) in the LbyL approach. We emphasize that
the WP description automatically takes advantage of the
completeness character of the set of eigenfunctions provided
by the spatial representation of the Hamiltonian on a grid.
The description of the dynamics does not depend on the
choice of the grid parameters, provided that a sufficiently
wide energy range is spanned by the eigenvalues obtained in
the diagonalization. Thus, the WP method provides a general
nonperturbative treatment of the molecule-laser interaction,
limited to the considered electronic states. It is straightforward
to extend the two-states model employed here to models
with several electronic states. Such multisurface models may
become necessary, for example, in studies of photoexcitation
of vibrational levels belonging to electronic states coupled by
molecular interactions.

APPENDIX C: RWA, DIABATIC AND ADIABATIC BASIS,
ADIABATICITY

1. RWA at the laser frequency, diabatic basis

The interaction picture has been used, in the LbyL
framework (Appendix B 2), to analyze the dynamics of
the vibrational population transfer. In this approach, the
Hamiltonian is nondiagonal, with matrix elements including
terms exp[±iδv′,v′′ t] [Eq. (B6)], with oscillating contributions
depending on the detuning of the laser with respect to the
frequency of the gv′′ → ev′ transition.

Instead of working in the interaction picture, one may
transform into a reference frame rotating at the laser frequency
ωL/2π . The laser is resonant with the transition g v′′

0 → e v′
0.

The time-dependent wave function 
(t) is explicitly expanded
over the diabatic basis made of gn wave functions |Eg v′′〉
of vibrational levels in the ground electronic state and em

wave functions |Ee v′〉 of levels of the excited electronic
state:


(t) = exp

(
− i

h̄
Eg,v′′

0
t

) ∑
v′′∈g

n

Av′′ (t) |Eg v′′〉

+ exp

(
− i

h̄
Eg,v′′

0
t

) ∑
v′∈em

Bv′ (t) exp(−iωLt)|Ee v′〉.

(C1)

In the RWA approximation, i.e., neglecting the rapidly
oscillating terms exp(−i2ωLt) [respectively, exp(+i2ωLt)],
the amplitudes Av′′ and Bv′ satisfy the system of coupled
first-order differential equations,

iȦv′′ = �
g

v′′,v′′
0

Av′′ + 1

2

∑
v′∈em

�v′,v′′f (t)Bv′ ,

(C2)

iḂv′ = �e
v′,v′

0
Bv′ + 1

2

∑
v′′∈g

n

�v′,v′′f (t) Av′′ ,

where �v′,v′′ are given by Eq. (B8) and where the energy
differences �

g or e
v1,v2 are defined in Eq. (11).

The time-dependent Hamiltonian Ĥdiab(t) is represented in
the diabatic basis by the following matrix:

Ĥdiab(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gn︷ ︸︸ ︷
�

g

v′′,v′′
0

0 0

0 �
g

v′′,v′′
0

0

0 0 �
g

v′′,v′′
0

. . .
. . .

. . .

. . . 1
2�v′,v′′f (t)

. . .

. . .
. . .

. . .

em︷ ︸︸ ︷
. . .

. . .
. . .

. . . 1
2�v′,v′′f (t)

. . .

. . .
. . .

. . .

�e
v′,v′

0
0 0

0 �e
v′,v′

0
0

0 0 �e
v′,v′

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C3)
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B. E. LONDOÑO et al. PHYSICAL REVIEW A 85, 033419 (2012)

2. Instantaneous adiabatic basis

At each time t , the diabatic time-dependent Hamiltonian
Ĥdiab(t) can be diagonalized, determining the (gn + em) field-
dressed or adiabatic levels |j (t)〉, with eigenvalues εj (t) [24]:

Ĥdiab(t)|j (t)〉 = εj (t)|j (t)〉. (C4)

These states can be considered as a family of solutions of
the time-independent Schrödinger equation, with the time t

as a parameter. The normalization condition is 〈j (t)|j (t)〉 = 1
and the integral 〈j (t)|

.

j (t)〉 is, thus, purely imaginary. The
phase of each eigenvector can be chosen arbitrarily at each
time t , and it is possible to choose the phase in such a way that
〈j (t)|

.

j (t)〉 = 0 [39].
The diabatic Hamiltonian can equivalently be written in the

adiabatic basis Ĥadiab(t) ≡ Ĥdiab(t), with

Ĥadiab(t) =
gn+em∑
j=1

εj (t)|j (t)〉〈j (t)|, (C5)

and the wave function 
(t) can be decomposed on the adiabatic
basis,


(t) =
gn+em∑
j=1

ej (t)|j (t)〉. (C6)

The amplitudes of population ej (t) of the instantaneous
adiabatic levels |j (t)〉 obey the following system of (gn + em)
coupled equations:

ih̄
d ej (t)

dt
= εj (t)ej (t) − ih̄

gn+em∑
k=1

αj,k(t)ek(t). (C7)

The coefficient αj,k(t) = 〈j (t)|
.

k(t)〉 = −〈
.

j (t) |k(t)〉 de-
scribes the variation of the adiabatic level |k(t)〉 in the adiabatic
basis [24]. With the particular phase convention written above
[39], the sum over k in Eq. (C7) does not include k = j .

An expression of αj,k(t) for k �= j is

[εk(t) − εj (t)]αj,k(t) = 〈j (t)|∂Ĥadiab

∂t
|k(t)〉 − ∂εk(t)

∂t
δkj .

(C8)

3. Adiabatic approximation

In the adiabatic approximation, the second term on the
right-hand side of Eq. (C7) is neglected, and the adiabatic
amplitudes evolve as

ej (t) = ej (t = 0) exp

[
− i

h̄

∫ t

0
εj (t ′)dt ′

]
. (C9)

In this approximation, when the system is at the initial time
in an instantaneous eigenstate of the Hamiltonian at t = 0, let
us say |j0(t = 0)〉, i.e., when in Eq. (C6) ej (t = 0) = δj,j0 , the
system remains in the instantaneous eigenstate that evolves
from the initial one, and there is no jump toward different
instantaneous adiabatic states.

The validity of the adiabatic approximation has been
discussed in several papers [24,40–43]. From Messiah [24],
a condition of validity is given by

max[
∑

k〈
.

j k (t)|j0(t)〉2]

min[|(εk(t) − εj0 (t))/h̄|2]
� 1, (C10)

but this condition is clearly questionable [20] and other criteria
are given, such as∣∣∣∣ 〈

.

j k (t)|jm(t)〉
εj (t) − εm(t)

∣∣∣∣ � 1, or

∣∣∣∣ 〈jk(t)| ∂H
∂t

|jm(t)〉
[εj (t) − εm(t)]2

∣∣∣∣ � 1. (C11)

In fact, there is no fully general rule allowing to predict
the validity of the adiabatic approximation [24]. The more
or less adiabatic character of the evolution can be discussed
a posteriori, once the evolution of the system has been
computed, by studying the evolution of the population in
different adiabatic levels.

4. Case of a two-level system

In the diabatic basis describing the two-level system
[
g, 
e], the effective time-dependent Hamiltonian in the
RWA approximation is [Eq. (C3)]:

Hdiab(t) =
[

+0 �(t)

�(t) δ

]
, (C12)

where δ denotes the detuning of the laser excitation, and
�(t) = 1

2�e,gf (t) is the instantaneous coupling. The prob-
ability amplitudes in the diabatic basis satisfy the first-order
differential system,

iȧ(t) = �(t)b(t), iḃ(t) = δb(t) + �(t)a(t). (C13)

The population transferred to the excited level at time t

reads

Pdiab(t) = |b(t)|2. (C14)

The adiabatic character of the process can be analyzed
by introducing the instantaneous adiabatic basis. This basis,
[
−, 
+], can be obtained from the unitary matrix Û (t) that
diagonalizes Hdiab(t) defined in Eq. (C12) [38],

Û (t) =
[

cos θ
2 e−iφ/2 − sin θ

2 e−iφ/2

sin θ
2 eiφ/2 cos θ

2 eiφ/2

]
, (C15)

with eigenvalues

E±(t) = 1
2δ ± 1

2

√
δ2 + 4|�(t)|2. (C16)

θ (t) is defined by the relation

tan θ (t) = 2|�(t)|
δ

, 0 � θ < π, (C17)

and the phase φ(t) by

�(t) = |�(t)|eiφ(t), 0 � φ < 2π. (C18)

For the excitation by an unchirped Gaussian pulse, one can
take φ(t) ≡ 0. The instantaneous adiabatic states 
−(t) and

+(t) are related to the diabatic ones by(


−(t)


+(t)

)
= Û−1(t)

(

g


e

)
. (C19)
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They are the solution of

ih̄
d

dt

(

−

+

)

=
(

E− 0

0 E+

)(

−

+

)

+
[

− ih̄θ̇

2

(
0 −1

1 0

)
− h̄φ̇

2

(
cos θ − sin θ

− sin θ − cos θ

)]

×
(


−

+

)
. (C20)

In the adiabatic basis, the solution of the time-dependent
Schrödinger equation can be written as


(t) = e−i δ
2 t [α(t)|
−(t)〉 + β(t)|
+(t)〉]. (C21)

The coupled system for the amplitudes of the instantaneous
adiabatic levels is

iα̇ = −1

2

√
δ2 + 4�2 α − i

2
θ̇(t)β,

(C22)

iβ̇ = 1

2

√
δ2 + 4�2 β + i

2
θ̇(t)α.

The population in the instantaneous adiabatic levels |
−(t)〉
and |
+(t)〉 may be found as

P
(+)
adiab(t) = |β(t)|2, P

(−)
adiab(t) = |α(t)|2. (C23)

The second term on the right-hand side of Eq. (C22)
represents the nonadiabatic coupling between the adiabatic
levels. When in Eq. (C15) φ(t) ≡ 0, the nonadiabatic coupling
is proportional to h̄θ̇

2 . The nonadiabatic coupling can be
neglected if and only if

1
4 (h̄θ̇ )2 � (E+ − E−)2, (C24)

The evolution is then adiabatic and the instantaneous
adiabatic levels evolve as


±(t) = 
±(t = 0) exp

(
− i

h̄

∫ t

0
E ± (t ′)dt ′

)
. (C25)

At t = 0, we assume that α(t = 0) = 1 and β(t = 0) = 0 or,
equivalently, that 
(t = 0) = 
−(t = 0) = 
g . In the adia-
batic approximation, the probability amplitudes in the diabatic
basis, the so-called Rabi oscillations [38], can be simply
calculated by using the general prescription of Sec. IV C 3a of
Ref. [38]: (i) at t = 0, project the initial probabilty amplitude,
defined in the diabatic basis, onto the adiabatic basis, using
the transformation [Eq. (C19)]; (ii) propagate adiabatic states
according to Eq. (C25); and (iii) project 
(t) on the diabatic
basis.

APPENDIX D: RESONANT EXCITATION FROM A N-FOLD
DEGENERATE LEVEL

We consider the excitation from a system of N degenerate
levels |g v′′〉, v′′ = 1 to N , toward a single level |e v′

0〉 (gn =

N em = 1). The relevant Hamiltonian Hdiab(t) [Eq. (C3)] can
be written as

Hdiab(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N︷ ︸︸ ︷
0 0 · · · 0

0 0 · · · 0

...
...

...
...

0 0 · · · 0

W (t)/2 W (t)/2 · · · W (t)/2

1︷ ︸︸ ︷
W (t)/2

W (t)/2

...

W (t)/2

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(D1)

where � is a common detuning and we assume that all
couplings are equal, W (t) = �1,v′′f (t) for v′′ = 1 to N .

The energies of the adiabatic levels are given by

εj (t) = 0 for 1 � j � (N − 1),

ε−(t) = εj=N (t) = 1
2 [� −

√
�2 + NW 2(t)], (D2)

ε+(t) = εj=N+1(t) = 1
2 [� +

√
�2 + NW 2(t)].

The instantaneous adiabatic levels |j (t)〉 are defined by their
components Vi,j (t) on the diabatic levels |i〉, which satisfy

εj (t)Vi,j = W (t)

2
VN+1,j for 1 � i � N

W (t)

2
[V1,j + · · · + VN,j ] = [εj (t) − �] VN+1,j . (D3)

For the degenerate eigenvalues εj (t), with 1 � j � (N −
1), orthogonal eigenvectors can be found. For example, we
may construct the following orthogonal basis:

Vi,j (t) = − 1√
j (j + 1)

for 1 � i � j and

1 � j � (N − 1)

Vj+1,j (t) =
√

j

j + 1
(D4)

Vi,j (t) = 0 for (j + 2) � i � (N + 1).

For the two other eigenvalues ε∓(t), the eigenvectors are
determined by

for j = N and j = N + 1 : Vi,j = Vg,∓, for 1 � i � N

and V(N+1),j = Ve,∓, with ε∓ Vg,∓ = W

2
Ve,∓

and the normalization condition,

V 2
g,∓

[
N +

(−� ∓
√

�2 + NW 2(t)

W (t)

)2]
= 1.

For resonant excitation (� = 0) one has Vg,∓ = 1√
2N

and

Ve,∓ = ∓ 1√
2
.

We consider now the resonant excitation from a particular
sublevel of the N -fold degenerate level of the ground state. If
the conditions of adiabatic evolution are satisfied, the evolution
of the amplitudes of population Ai(t) and B1(t) in the diabatic
levels |g,i〉 and |e,1〉 can be calculated by using the general
method described in Appendix C 4, because the instantaneous
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eigenvectors of the Hamiltonian in Eq. (D1) are known. At
t = 0, the initial wave function |g,1〉 is expanded over the
adiabatic levels |j (t = 0)〉 [Eq. (C6)] leading to the initial
amplitudes Vi=1,j (t = 0). Each adiabatic level then evolves
according to Eq. (C9). The amplitude of population of the
diabatic level |i〉 at time t is equal to

〈i|
(t)〉 =
∑

j

Vi=1,j (0)Vi,j (t) exp

[ ∫ t

0
− i

h̄
εj (t ′)dt ′

]
.

Using Eqs. (D5), one obtains the probability amplitudes in
the ground state Ai(t) or in the excited state B1(t),

A1(t) = N − 1

N
+ 1

N
cos

[√
N

2
�(t)

]
,

Ai(t) = − 1

N
+ 1

N
cos

[√
N

2
�(t)

]
for 2 � i � N,

B1(t) = 1√
N

sin

[√
N

2
�(t)

]
,

where �(t) =
∫ t

0
W (t ′)dt ′. (D5)

Notice that time evolution of a resonantly excited two-level
system is fully characterized by �(t) [Eqs. (17) and (D5)]. By
contrast, the evolution of our (N + 1)-level system is governed
by the angle

√
N�(t). The absolute value of the probability

amplitude of the excited level is reduced by the factor
√

N and
the population is redistributed among N levels of the ground
state. For a large number of degenerate levels (N → ∞) and
in the high-field regime [�(t) large], the excitation process is
blocked and the population remains in the initial level.

Conversely, in the low-field limit �(t) � π , the population
in the excited level in the (N + 1)-level system, B1(t) ∼
1
2�(t), is weak and identical to the amplitude of population
in a two-level system resonantly excited by the same pulse.

Simultaneously, in the ground electronic state, there is no
change in the amplitude of population of the levels A1(t) ∼ 1
and Ai(t) ∼ 0 for 2 � i � N .

APPENDIX E: ULTRASHORT PULSE TRAIN

The time-dependent electric field describing a coherent
train of Gaussian pulses is given by [10]

E(t) = 1

2

N−1∑
q=0

E0 exp (i�0)f (t − qTrep)

× exp[i(ωL(t − qTrep) + q�φce)], (E1)

where N is the number of pulses, �0 is a constant phase, f is a
Gaussian envelope given by Eq. (3), Trep is the pulse repetition
time, and �φce is the pulse-to-pulse carrier-envelope offset
phase shift.

In the energy domain, the spectral distribution of E(t) is
obtained from the Fourier transform of Eq. (E1)

Ẽ(ω) = E0

2
f̃ (ω − ωL) exp

[
i
N − 1

2
(�φce − ωTrep)

]

× exp (i�0)
sin[N (�φce − ωTrep)/2]

sin[(�φce − ωTrep)/2]
. (E2)

This distribution consists of a comb of structures (“teeth”)
located at equally spaced frequencies,

fm = mfrep + δ,

with spacing frep = 1/Trep; δ is the offset frequency equal
to δ = �φcefrep/(2π ). Each peak m = 0,1,2, etc., has a
maximum of intensity [f̃ (ωm − ωL)]2N 2 increasing as the
square of the number of pulses. Here ωm = 2πfm and f̃ (ω)
denotes the Fourier transform of f (t). The width of each tooth
frep2π/N decreases with increasing N .
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