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We use the relativistic configuration-interaction method and the model potential method to
calculate the scalar and tensor components of the dipole polarizabilities for the excited states
1s3p 3P, and 1s3p 3P, of the helium atom. The calculations of the reduced matrix

elements for the resonant terms in the spectral expansion of the polarizabilities are derived using
two-electron basis functions of the relativistic Hamiltonian of the atom, a Hamiltonian that
incorporates the Coulomb and Breit electron—electron interactions. We formulate a new approach
to determining the parameters of the Fuss model potential. Finally, we show that the
polarizability values are sensitive to the choice of the wave functions used in the calculations.
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1. INTRODUCTION higher-order perturbation effects, which are needed for a
meaningful interpretation of the results of measurements. For

The anticrossing of atomic levels in an external fieldthis reason, Schumanet al! justified the need to employ
constitutes an effective method for precise measurements @fiethods of quantum mechanics and quantum electrodynam-
the fine- and hyperfine-structure intervals and other spectrdes to analyze the results of measurements of drte-5()
scopic constants, such as the exchange energy and the diagtio (6“’=8772.517(16) MHz is the fine-structure interval
onal and off-diagonal matrix elements of the spin—orbit cou-in a zero field) at the point of anticrossing of thes3p P,
pling operators. In a recent paper, Schumabal® studied and 1s3p 3P, levels of helium. Another interesting result of
the 0" X0~ anticrossing of the 43p 3P, (J=0,2) levels of  that paper was the possibility of studying the effects of spin—
helium by methods of high-resolution laser spectroscopy. Agpin mixing of helium levels with different values of orbital
the anticrossing point, the error in measuring the fine-angular momentuni but the same parity®
structure intervald= Egsp — E33sp, amounted to+5 MHz, The aim of the present paper is to analyze theoretically
and the use of microwave devices makes it possible to redudbe contribution of relativistic effects in calculations of the
this value by a factor of at least 100. Nevertheless, the degregcalar and tensor components of dipole polarizabilities,
of accuracy already achieved makes it possible to drawvhich determine the shift and splitting of the3p 3P, (J
important conclusions concerning the optimum choice=0,2) levels of helium. We employ two alternative ap-
of theoretical approaches describing the effectproaches based on the relativistic configuration-interaction
of 100—200kV cm* electric fields on the spectrum of the method and on the Fuss model potential mettfod.
helium atom.

In particular, the widely used semiempirical approach,
which makes it possible to analyze the observed spectrum i
terms of averaged values of the atomic Hamiltonian with
allowance for relativistic correction@ither spin-dependent
or spin-independenbf order «? Ry (Refs. 2 and B with « The shift and splitting of a leveginJLM) in a uniform
the fine-structure constant, does not require allowing foffield F is described by the formula

. ALLOWING FOR RELATIVISTIC EFFECTS
N CALCULATIONS OF DIPOLE POLARIZABILITIES
OF THE HELIUM ATOM
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Note that atM =0 the matrix elemenV; ;..,=0 (see, e.g.,
ABum=—5 anyimF?, (1) Ref. 10, so that the state ¥, remains isolated, i.e., does
not mix with states withi=0 andJ=2.
where the polarizabilityr, 5,y contains a scalar component Equation(4) also implies that the minimum value far
(apy) and a tensor componentf;), i.e., in an electric fieldanticrossing of the fine-structure sublev-
elg) is attained at

s . ¢ 3M?-JJ+1) s s t
angim= @pgt apy J(23-1) 2 _ 25(0)(“33P0_a33pz+a33pz)
. . i FoF= (@Sa, —aSap +atas )2+8(ats, )2 ©
As the field strengtlfr increases, the splitting of the level 33, “3%, " T33P, 3%,

may reach values comparab_le o the distance betweer_l adja- pe problem of exacb initio relativistic calculations of
cent levels of the same paritghe components of the fine the quantitiesrs, — o and ot in Egs.(4) and (6) is
structure of an atomic multipletHence in the case under T73%p,  T3%P, 3%, ~

investigation, i.e., the $3p 3P, and 1s3p 3P, levels and a extremely difficult and involves calculating spectral sums
field strengthF of several hundred kilovolts per centimeter, OVer the complete set of unperturbed states. The need for
the level shiftAE, ; y=E— E,;.» can be found by solving such summation(irrespective of the general approach

the secular equation emerges in the process of determining the perturbed wave
functions or energy shifts of atomic levels in the
det|| AE 5 mb33 — Vi5]|=0. (3)  perturbation-theory setting. In addition to direct summation

over the discrete spectrum of intermediate states and integra-
Here the finite off-diagonal matrix elements, correspond tion over the continuous spectrum of intermediate states,
to dipole transitions between the fine-structure componentghich are extremely involved processes in the relativistic
in second-order perturbation theory in the external fleld  case, we basically used two methods to effectively calculate
To derive a formula describing the dependenceSa@in  such spectral sum&omposite matrix elementsa method
F, we use the solutions of E¢3) and the definition of the for integrating inhomogeneous differential equations and a
scalar and tensor components of the polarizabiy The = method that uses the formalism of Green’s functions.

result is In the first approach, the polarizability of the sté® is
1 5 given by the formula
t t
5: \/ 5(0)_5 Fz(aggpo_agg,Pz‘f' a33P2) +2F4(a33pz)2 a|o>=—2<‘P|D|(/lo>, (7)
1 in which the perturbed wave functigi’) satisfies the inho-
=~ 50— > Fz(agspo_ a§3pz+ at33pz) mogeneous equation
c4 (H—Eo)¥=—DW,. ®
t A
+ @(a33p2)2+ T (4) In (7) and(8), D is the dipole moment operator, ahtdis the

relativistic Hamiltonian.

This expression allows for the principal, or resonant, part of ~ An important advantage of this method is the possibility
the hyperpolarizabilityfourth-order corrections in the exter- Of using different expressions for the atomic potential in the
nal field of the interacting sublevels of the multipleB,  numerical integration of E(8), and the calculations can be
with a zero projection of total angular momentuM,=0. done not only for a purely Coulomb interaction but in the
The contribution of the nonresonant part to the hyperpolarmulticonfiguration interaction approximatidrthe Hartree—
izability is at most a few percefitin deriving (4) we allowed ~ Fock—Dirac approximatio, and the relativistic random
for the fact that the matrix elemeit;, is finite atd’=J  Phase approximation with exchantfeThe most exact rela-
+1,J+2 and contains only a tensor part, which depends ofiVistic calculations were done by Johnson and Chéfigr
the projectionM of the total angular momenturd. If we th_e polarizability of the ground state of a hel?umlike atom
ignore the multiplet splittingEf%)L— EES)rL in comparison to Wlth 2<7=<30, but a_t presgnt there are no similar results for
the energy differenc&(%), —E'®),, , between different mul- excited states of helium with #0. , o
tiplets withn’ #n, the matrix elemen¥;; can be expressed The effecnyeness of the .method of Green; functions is
largely determined by the existence of appropriate represen-

. . .ge 3
m_terms of Fhe tgnsor polarlz_ablhty of thes_?.p .P2 state. In tations of these functions. Since in the relativistic case the
this approximation the matrix elemeNt, is given by the

formula’ expressions for the Green'’s functions are known only for the
Coulomb field, the use of this approach is restricted to prob-
F2 lems in which the difference of the potential and the Cou-
Vo= — —agsp ) (5)  lomb potential is insignificant or can be taken into account
V2 by perturbation-theory techniqués®®

) o To allow for the contribution of relativistic corrections in
. The ?ffere_nce of the scalar polarizabilities in Bd),  cajculations of the scalar and tensor components of polariz-
a33p,~ A33p,, IS determined by the contribution of relativ- gpjjities, we used the resonance approximation for the
istic effects, which means it is a small quantity of ordet second-order composite matrix elements, i.e., in the spec-
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trum of intermediate states we isolated the terms that correFABLE I. Reduced matrix elements of the dipole moment operator.
spond to transitions in which the principal quantum number

Transition Matrix element
does not change.
For instance, for the scalar polarizability of the triplet 1s3p *Po—1s3s°S, —6.4797
InJLM) state 1s3p ®P,—1s3s3S,; —14.489
' 1s3p °Py—1s3d °D; 8.2923
2 |<nJLHr||n’J’L’>|2 1s3p °P,—1s3d °D, 1.8542
Ay =— , 9) 1s3p ®P,—1s3d °D, 7.1805
3(2‘]+1) n'J'L’ EHJL_ EnrJrLr 1s3p 3P2—>153d 3D3 16.994
the resonant term:) in (9) has the form
2 ’
Sy 28531 L(2J'+1) B anJ,L_l
JLT nJ L- JL
" 3 3 Enai—Eny -1 " qll(F):kZﬂ Cl™ Dy (12)
2 ' . . . . .
« L J 1 D (L+1)(23°+1) Here thed,, are two-particle basis functions with fixed val-
J L-1 1 3 Epsi—Eny Li1 ues of total angular momentud its projectionM, and par-
, ity. We found the weighting factor€}(” from the varia-
» R L1 L J 1 10 tional principle by using the relativistic no-pair Hamiltonian,
Bny L+1Rn3L J L+1 1 ' (10 which incorporates the Coulomb and Breit electron—electron

o interaction operator&;?? averaged over the functiord2).
Here the {! 12 13} are Wigner §-symbols!® and the To exclude the contribution of negative-energy statee
o positron spectrum the two-particle operators in the relativ-
istic Hamiltonian were multiplied by products of single-
particle operators projecting on the subspaces of solutions of
the positive-energy Dirac equatién.
{ cost,., J=L, The wave function$12) are normalized by the condition
nJL

1, J#L, 1y

whered,,, is the singlet—triplet mixing angle. Chalgoted
that 6, is almost entirely independent af and the typical
values ofé, atL=1,2,3 are 0.02°, 0.5°, and 30°, respec-
tively. The tensor part of the polarizability has a similar
structure and differs fronG10) only in angular coefficients;

RY)'L" are radial matrix elements. In E€L0), the effects of
singlet—triplet mixing of levels are taken into account by the
parameter

> 1c{PP=1. (13
k=1

The single-particle basis orbitals employed in the
configuration-interaction method incorporates she, d, f,
and g partial waves, with a spline approximation used for
each wave. Estimates of the convergence rate of the method

for the sake of brevity we will not write it here. . ; .
S(r) 1(r) ... (for calculations of given accuraggan be found in Refs. 13
To calculatea,y/ and a,;{ we used exact relativistic and 22

results for the radial integrals, while for the energy denomi- I .
. . X The results of relativistic calculations for the reduced
nators we used precise experimental dit@alculations of : . .
matrix elements(without allowance for retardation effects

the other terms i®9) with n’ # n were done with nonrelativ- . . )
- . i . for the dipole moment operatoare listed in Table I.
istic values for the radial matrix elements of the dipole mo- : .
In Tables Il and Ill we list the results for the contribu-

ment operator. To this end we used exact numerical data f%rons of the intermediat& andD states in calculations of the

the' oscillator strengths of thg—p and p—d trgn§|t|ons N scalar polarizabilities of thesBp 3P, (J=0,2) states of he-
helium calculated with multiparameter variational wave . . .
19.20 lium. The difference between the tensor part of the polariz-

functions: I, 3 .
This approach is applicable primarily because the contri-abIIIty of the 1s3p P, level and the scalar part is that the

. L, . : ; ; contributions of the intermediate statessris3S; and
bution of states witi'’ =n in (9) is numerically predominant 1sn’'d 3D, have opposite signs and that the total contribution
and amounts to roughly 95% in the case of excite@d>P; L P g

rq 3 . .y . s
(3=0.2) levels of heliumsee Tables Il and 111 below of the 1sn’d °Dj states contains an additional numerical fac

tor, —2/7.
Table IV summarizes the results of numerical calcula-
3. SELECTION OF THE BASIS WAVE FUNCTIONS AND tions of the scalar and tensor components of helium polariz-
DISCUSSION OF THE RESULTS OF CALCULATIONS abilities. The dependence @ on F near the anticrossing

In recent years the configuration-interaction method ha®©int is plotted in Fig. 1. _ _
been successfully used to obtain precise wave functions and 'Note that the differencé a remains almost the same if
matrix elements for atoms with a small number of electronsVe USe nonrelgnwstl‘c v?natlonal valueg for the resonant ma-
e.g., heliumlike systems. In the present paper we use thiix elements in(10): azsp =17207, agsp =17 198, and
technique developed by Johnseinal.*3to calculate the re- Aa=9. The explanation is that the principal contribution to
duced matrix elements corresponding to the resonant termsa is provided by the relativistic corrections for the fine
in the expansiorni10). structure of the levels in the energy denominatoryk#)

The wave function of the initia{l) and final ) states rather than the relativistic corrections for the matrix elements

can be written of the dipole moment operatgsee Table)l
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TABLE II. Contributions of theS and D states of the intermediate spectrum to the polarizability of the
1s3p P, state of helium.

n’ 1sn's3S; (A;=0.698) 1sn's3S; (A\g=—10.302) sn's3S; 1sn'd®D;
2 -0.34 —1.67 —1.57

3 —2377.93 —2682.56 —2638.45 18742.21
4 451.87 319.37 312.17 623.53
5 25.38 18.27 17.92 86.01
6 6.36 4.60 4.72 27.16
7 2.59 1.88 1.85 12.29
8 1.34 0.97 0.96 6.72

9 0.79 0.57 0.57 4.13
10 0.51 0.37 0.34 2.59
Total —1888.6 —2337.7 —2301.50 19540.63

To test the above results, we did alternative polarizabil+adial quantum numbeh, the effective orbital angular mo-
ity calculations using the method of the Green’s functions ofmentum, andv,, the effective principal quantum number in

an optical electron to sum over the complete intermediatethe formula for the energy of the atomic stéte),
states spectrum i(®). )

Note that the correct selection of the initial analytical E. —— Z_ (17)
representation of the Green’s functioBs(r,r,) plays an " 2v§,'
important role in specific polarizability calculations, since it
makes it possible to obtain the result in the form most ratio- Here and in(15), Z is the charge of the residual ion. The
nal and convenient for further applications. In this paper we explicit expression foRy,(r) coincides in form with hydro-

3
have taken the Green’s function for the Fuss model potentlaqllenllke wave functioné:

from Ref. 14. The angular part @g(rq,r,) is simply the 27312 27r
product of spherical harmonics, while for the radial part — Rn(r)=-——U, |( » ) (18)
g,(E;rq,r,) we have taken an expansion in Sturm functions, ni n!
which have only a discrete spectrdm: The parametek, (I may represent a specific set of spin—
orbit quantum number, in addition to representing a specific
Gg(ry,ro)= 2 9i(E;re,r2)Yim(ny)Yin(ny), (14)  angular momentuincan be found by comparinfl?) with
experimental values of the lowest state of a valence electron
% with a givenl (see Ref. 2B The radial quantum number,
QI(Eiry,rp) = 4z 2 Uw(2Zr, /v)U(2Zr3/v) , (15  of this state is assumed to be zero. As shown by Sirflags,
Vok= kK+X+1-v represents the entire experimental spectrum of the atom
wherev=2/\/— 2E, and fairly well (in most cases the weak dependenca obn the
position of the energy level can be ignoyed
[k F( ) 2)\|+1 With such a definition of\; for atomic series whose
V()= F(k+ 2+2\)) Trzran) X ex 0. lowest states are the ground and the metastable, the error in

(16)  calculating the radial matrix elemengal|rt|n’I)L=1 with
The radial wave functionR,,(r) are obtained from the resi- Wave functions(18) may reach 50%. In view of this we
dues of the Green's function at the poles fformulated a modified approach to the definitiomefand\,
9i(Eiry,r5): v=wy,=n,+\+1, with n,=0,1,2... the Iinthese serie& which allowed us to significantly refine the
calculations of the spectroscopic characteristics of atoms in
ground and excited states. Here the radial quantum number
TABLE lIl. Contributions of theSandD states of the intermediate spectrum of the lowest stat€ground or metastableof the series is
to the polarizability of the $3p *P, state of helium. assumed to be unity, so that the effective orbital angular

=}

’ 1sn's3s; 1sn'd °D, 1sn'd °D, 1sn'd °D,

2 —-1.57 . - .
3 _2638.76 187.32 2809.37 15 735.95 TABLE IV. Scalar and tensor polarizabilities of the helium atom.
4 312.15 6.23 93.52 523.74 - -
5 17.92 0.86 12.90 72.95 Quantity Numerical value
6 4.72 0.27 4.07 22.81 oS 17 203
7 1.85 0.12 1.84 10.32 a0 17191
8 0.96 0.07 1.01 5.65 A3a Pza Cad 10
9 0.57 0.04 0.62 3.47 o 3% “3%, 351 65
33p, ’
10 0.34 0.03 0.39 302.17 = 2 0.29 343 10-4

Total —2301.83 194.94 2923.72 16 376.36 =150.99kvcm'?t




276 JETP 88 (2), February 1999 Derevianko et al.

Sx10% TABLE V. Scalar and tensor polarizabilities of the helium atom calculated
1.34 by the model potential method.
1.32 Quantity Numerical value
1.30 aSap 17 266
1.28F a§3PZ 17 255
1.26} Aa=agsp ~a3sp, 11

al 374.16
1.24 —
e [= 0.28 458104
1.22 . . . =146.45kVcm?

0 50 100 150 200
F, kV cm-1

FIG. 1. Dependence af (in atomic unit$ on the electric field strength in

. . I cant figures cancel out. This loss of accuracy can be avoided
the vicinity of anticrossing-.

if we expand the polarizabilities as functions of the energy of
an atomic level in a Taylor series. The calculation then re-
duces to finding the energy derivatives of the polarizabilities,
: and these can be expressed in terms of third-order dipole
cipal quantum number of the lowest state. Note that the Wave v elements with two Green's functions. which. in par-

function of the ]owest Igvel at, =1 coincides precisely with ticular, enter into the expression for the hyperpolarizability
the wave function obtained by the quantum-defect method N the atomic state?

5
atoms’ It is no accident that the numerical results in Tables IV

Thus, the sets of states of an atom with spin—orbit quans g v arer close, since the model potential method yields a

tum numbers of the ground and metastable levels are, Stric“é(orrect dependence in the higher-order matrix elements for

oy =0. Hence the radial Groen functions i the subspases g% SeT8Y of the atomic eveS provided that we se the
tr;e séries in question contain additional “imaginary” terms xact (experimenta| val_ues fo_r_the energies of _the fine-
with n,=0 and an effective principal quantum numbsy, structure sublevels. Thls (_:ondltlon ma_k_es_ it possible to 'Fake
—, _’1 The binding energy of the “imaginary” state, de- into acc_ount the contrlbutlor_]s of relativistic and correlat|(_)n
finegd in.(17) is almost ten times higher than the exci'éation effects In the model pot(_antlal method. Furthermore, using
energy of ar,1y level in a series, so that its contribution to thethIS method, one can easily Sh.OW that the s?ates bgl_on.gmg 0

i 2 . ’ . a complete set and not taken into account in relativistic cal-
optical-transition amplitude can be ignored.

Note also that the wave function of a valence electron inculations(the states belong to the continuum and to the dis-
state [nl) has the correct sign in the asymptotic region crete spectrum witin’ >10) contribute no more than 0.2%

. ) o gn n ympi 99N 5 the numerical values of the guantities considered here.
(which provides the principal contribution to multiple matrix

lements only if we multiply it by an addition ph factor The present work was made possible by the financial
e E only € muftiply 1t by an addition phase facto support the Russian Fund for Fundamental Resedbcant
(=1), wherek=n—n,—1-1.

The second and third columns of Table Il contain th697-02-16407and an international grant with the German Re-
contributions of the intermediatesh’s S, states to the sca- search Society 96-02-00257, 436 RUS 113/16R/9] and

lar polarizability of the £3p 3P, state calculated by the tra- ah?’el?L;.S. National Science Foundatidrant PHY 95-
ditional and modified approaches, which yield values\ pf '

equal to 0.698 ar)eL 0.30.2, .respectwely. _A comparison with SE-mail: pal@kalium.physik tu-berlin.de

the data of precise variational calculatiofiee fourth col- bpt97@ftri.extech.msk.su
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