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Fine-structure effects in relativistic calculations of the static polarizability of the helium
atom
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We use the relativistic configuration-interaction method and the model potential method to
calculate the scalar and tensor components of the dipole polarizabilities for the excited states
1s3p 3P0 and 1s3p 3P2 of the helium atom. The calculations of the reduced matrix
elements for the resonant terms in the spectral expansion of the polarizabilities are derived using
two-electron basis functions of the relativistic Hamiltonian of the atom, a Hamiltonian that
incorporates the Coulomb and Breit electron–electron interactions. We formulate a new approach
to determining the parameters of the Fuss model potential. Finally, we show that the
polarizability values are sensitive to the choice of the wave functions used in the calculations.
© 1999 American Institute of Physics.@S1063-7761~99!00902-6#
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1. INTRODUCTION

The anticrossing of atomic levels in an external fie
constitutes an effective method for precise measuremen
the fine- and hyperfine-structure intervals and other spec
scopic constants, such as the exchange energy and the
onal and off-diagonal matrix elements of the spin–orbit co
pling operators. In a recent paper, Schumannet al.1 studied
the 02302 anticrossing of the 1s3p 3PJ (J50,2) levels of
helium by methods of high-resolution laser spectroscopy
the anticrossing point, the error in measuring the fin
structure intervald5E3 3P0

2E3 3P2
amounted to65 MHz,

and the use of microwave devices makes it possible to red
this value by a factor of at least 100. Nevertheless, the de
of accuracy already achieved makes it possible to d
important conclusions concerning the optimum cho
of theoretical approaches describing the eff
of 100– 200 kV cm21 electric fields on the spectrum of th
helium atom.

In particular, the widely used semiempirical approa
which makes it possible to analyze the observed spectru
terms of averaged values of the atomic Hamiltonian w
allowance for relativistic corrections~either spin-dependen
or spin-independent! of ordera2 Ry ~Refs. 2 and 3!, with a
the fine-structure constant, does not require allowing
2721063-7761/99/88(2)/6/$15.00
of
o-
iag-
-

t
-

ce
ee
w
e
t

,
in

r

higher-order perturbation effects, which are needed fo
meaningful interpretation of the results of measurements.
this reason, Schumannet al.1 justified the need to employ
methods of quantum mechanics and quantum electrodyn
ics to analyze the results of measurements of thed-to-d (0)

ratio (d (0)58772.517(16) MHz is the fine-structure interv
in a zero field4! at the point of anticrossing of the 1s3p 3P0

and 1s3p 3P2 levels of helium. Another interesting result o
that paper was the possibility of studying the effects of spi
spin mixing of helium levels with different values of orbita
angular momentumL but the same parity.5,6

The aim of the present paper is to analyze theoretic
the contribution of relativistic effects in calculations of th
scalar and tensor components of dipole polarizabiliti
which determine the shift and splitting of the 1s3p 3PJ (J
50,2) levels of helium. We employ two alternative a
proaches based on the relativistic configuration-interac
method7 and on the Fuss model potential method.8

2. ALLOWING FOR RELATIVISTIC EFFECTS
IN CALCULATIONS OF DIPOLE POLARIZABILITIES
OF THE HELIUM ATOM

The shift and splitting of a levelunJLM& in a uniform
field F is described by the formula
© 1999 American Institute of Physics
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DEnJLM52
1

2
anJLMF2, ~1!

where the polarizabilityanJLM contains a scalar compone
(anJL

s ) and a tensor component (anJL
t ), i.e.,

anJLM5anJL
s 1anJL

t 3M22J~J11!

J~2J21!
. ~2!

As the field strengthF increases, the splitting of the leve
may reach values comparable to the distance between
cent levels of the same parity~the components of the fin
structure of an atomic multiplet!. Hence in the case unde
investigation, i.e., the 1s3p 3P0 and 1s3p 3P2 levels and a
field strengthF of several hundred kilovolts per centimete
the level shiftDEnJLM5E2EnJLM can be found by solving
the secular equation

detiDEnJLMdJJ82VJJ8i50. ~3!

Here the finite off-diagonal matrix elementsVJJ8 correspond
to dipole transitions between the fine-structure compone
in second-order perturbation theory in the external fieldF.

To derive a formula describing the dependence ofd on
F, we use the solutions of Eq.~3! and the definition of the
scalar and tensor components of the polarizability~2!. The
result is

d5AFd~0!2
1

2
F2~a3 3P0

s
2a3 3P2

s
1a3 3P2

t
!G2

12F4~a3 3P2

t
!2

.d~0!2
1

2
F2~a3 3P0

s
2a3 3P2

s
1a3 3P2

t
!

1
F4

d~0!
~a3 3P2

t
!21•••. ~4!

This expression allows for the principal, or resonant, par
the hyperpolarizability~fourth-order corrections in the exte
nal field! of the interacting sublevels of the multiplet 33PJ

with a zero projection of total angular momentum,M50.
The contribution of the nonresonant part to the hyperpo
izability is at most a few percent.9 In deriving~4! we allowed
for the fact that the matrix elementVJJ8 is finite at J85J
61, J62 and contains only a tensor part, which depends
the projectionM of the total angular momentumJ. If we
ignore the multiplet splittingEnJL

(0) 2EnJ8L
(0) in comparison to

the energy differenceEnJL
(0) 2En8J8L8

(0) between different mul-
tiplets withn8Þn, the matrix elementVJJ8 can be expresse
in terms of the tensor polarizability of the 1s3p 3P2 state. In
this approximation the matrix elementV02 is given by the
formula1!

V0252
F2

A2
a3 3P2

t . ~5!

The difference of the scalar polarizabilities in Eq.~4!,
a3 3P0

s
2a3 3P2

s , is determined by the contribution of relativ

istic effects, which means it is a small quantity of ordera2.
ja-

ts

f

r-

n

Note that atM50 the matrix elementVJ J61[0 ~see, e.g.,
Ref. 10!, so that the state 33P1 remains isolated, i.e., doe
not mix with states withJ50 andJ52.

Equation~4! also implies that the minimum value ford
in an electric field~anticrossing of the fine-structure suble
els! is attained at

F5F̄5A 2d~0!~a3 3P0

s
2a3 3P2

s
1a3 3P2

t
!

~a3 3P0

s
2a3 3P2

s
1a3 3P2

t
!218~a3 3P2

t
!2

. ~6!

The problem of exactab initio relativistic calculations of
the quantitiesa3 3P0

s
2a3 3P2

s anda3 3P2

t in Eqs.~4! and~6! is

extremely difficult and involves calculating spectral sum
over the complete set of unperturbed states. The need
such summation~irrespective of the general approac!
emerges in the process of determining the perturbed w
functions or energy shifts of atomic levels in th
perturbation-theory setting. In addition to direct summati
over the discrete spectrum of intermediate states and inte
tion over the continuous spectrum of intermediate sta
which are extremely involved processes in the relativis
case, we basically used two methods to effectively calcu
such spectral sums~composite matrix elements!, a method
for integrating inhomogeneous differential equations an
method that uses the formalism of Green’s functions.

In the first approach, the polarizability of the stateu0& is
given by the formula

a u0&522^CuDuc0&, ~7!

in which the perturbed wave functionuC& satisfies the inho-
mogeneous equation

~Ĥ2E0!C52DC0 . ~8!

In ~7! and~8!, D is the dipole moment operator, andĤ is the
relativistic Hamiltonian.

An important advantage of this method is the possibil
of using different expressions for the atomic potential in t
numerical integration of Eq.~8!, and the calculations can b
done not only for a purely Coulomb interaction but in th
multiconfiguration interaction approximation,7 the Hartree–
Fock–Dirac approximation,11 and the relativistic random
phase approximation with exchange.12 The most exact rela-
tivistic calculations were done by Johnson and Cheng13 for
the polarizability of the ground state of a heliumlike ato
with 2<Z<30, but at present there are no similar results
excited states of helium withLÞ0.

The effectiveness of the method of Green’s functions
largely determined by the existence of appropriate repres
tations of these functions. Since in the relativistic case
expressions for the Green’s functions are known only for
Coulomb field, the use of this approach is restricted to pr
lems in which the difference of the potential and the Co
lomb potential is insignificant or can be taken into accou
by perturbation-theory techniques.14,15

To allow for the contribution of relativistic corrections i
calculations of the scalar and tensor components of pola
abilities, we used the resonance approximation for
second-order composite matrix elements, i.e., in the sp
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trum of intermediate states we isolated the terms that co
spond to transitions in which the principal quantum num
does not change.

For instance, for the scalar polarizability of the tripl
unJLM& state,

anJL
s 52

2

3~2J11! (
n8J8L8

u^nJLir in8J8L8&u2

EnJL2En8J8L8

, ~9!

the resonant termanJL
s(r ) in ~9! has the form

anJL
s~r !52

2bnJL
2

3 H (
J8

L~2J811!

EnJL2EnJ8 L21
FbnJ8 L21RnJL

nJ8 L21

3H L J 1

J8 L21 1J G2

1(
J8

~L11!~2J811!

EnJL2EnJ8 L11

3FbnJ8 L11RnJL
nJ8 L11H L J 1

J8 L11 1J G2J . ~10!

Here the $m1 m2 m3

j 1 j 2 j 3% are Wigner 6j -symbols,16 and the

RnJL
n8J8L8 are radial matrix elements. In Eq.~10!, the effects of

singlet–triplet mixing of levels are taken into account by t
parameter

bnJL5H cosunL , J5L,

1, JÞL,
~11!

whereunL is the singlet–triplet mixing angle. Chang17 noted
that unL is almost entirely independent ofn, and the typical
values ofunL at L51,2,3 are 0.02°, 0.5°, and 30°, respe
tively. The tensor part of the polarizability has a simil
structure and differs from~10! only in angular coefficients
for the sake of brevity we will not write it here.

To calculateanJL
s(r ) and anJL

t(r ) we used exact relativistic
results for the radial integrals, while for the energy denom
nators we used precise experimental data.18 Calculations of
the other terms in~9! with n8Þn were done with nonrelativ-
istic values for the radial matrix elements of the dipole m
ment operator. To this end we used exact numerical data
the oscillator strengths of thes–p and p–d transitions in
helium calculated with multiparameter variational wa
functions.19,20

This approach is applicable primarily because the con
bution of states withn85n in ~9! is numerically predominan
and amounts to roughly 95% in the case of excited 1s3p 3PJ

(J50,2) levels of helium~see Tables II and III below!.

3. SELECTION OF THE BASIS WAVE FUNCTIONS AND
DISCUSSION OF THE RESULTS OF CALCULATIONS

In recent years the configuration-interaction method
been successfully used to obtain precise wave functions
matrix elements for atoms with a small number of electro
e.g., heliumlike systems. In the present paper we use
technique developed by Johnsonet al.7,13 to calculate the re-
duced matrix elements corresponding to the resonant te
in the expansion~10!.

The wave function of the initial~I! and final (F) states
can be written
e-
r

-

i-

-
or

i-

s
nd
,

he

s

C I ~F !5(
k> l

Ckl
I ~F !Fkl . ~12!

Here theFkl are two-particle basis functions with fixed va
ues of total angular momentumJ, its projectionM , and par-
ity. We found the weighting factorsCkl

I (F) from the varia-
tional principle by using the relativistic no-pair Hamiltonia
which incorporates the Coulomb and Breit electron–elect
interaction operators,21,22 averaged over the functions~12!.
To exclude the contribution of negative-energy states~the
positron spectrum!, the two-particle operators in the relativ
istic Hamiltonian were multiplied by products of single
particle operators projecting on the subspaces of solution
the positive-energy Dirac equation.7

The wave functions~12! are normalized by the condition

(
k> l

uCkl
I ~F !u251. ~13!

The single-particle basis orbitals employed in t
configuration-interaction method incorporates thes, p, d, f ,
and g partial waves, with a spline approximation used f
each wave. Estimates of the convergence rate of the me
~for calculations of given accuracy! can be found in Refs. 13
and 22.

The results of relativistic calculations for the reduc
matrix elements~without allowance for retardation effect
for the dipole moment operator! are listed in Table I.

In Tables II and III we list the results for the contribu
tions of the intermediateSandD states in calculations of the
scalar polarizabilities of the 1s3p 3PJ (J50,2) states of he-
lium. The difference between the tensor part of the pola
ability of the 1s3p 3P2 level and the scalar part is that th
contributions of the intermediate states 1sn8s 3S1 and
1sn8d 3D1 have opposite signs and that the total contribut
of the 1sn8d 3D3 states contains an additional numerical fa
tor, 22/7.

Table IV summarizes the results of numerical calcu
tions of the scalar and tensor components of helium pola
abilities. The dependence ofd on F near the anticrossing
point is plotted in Fig. 1.

Note that the differenceDa remains almost the same
we use nonrelativistic variational values for the resonant m
trix elements in~10!: a3 3P0

s
517 207, a3 3P2

s
517 198, and

Da59. The explanation is that the principal contribution
Da is provided by the relativistic corrections for the fin
structure of the levels in the energy denominators of~12!
rather than the relativistic corrections for the matrix eleme
of the dipole moment operator~see Table I!.

TABLE I. Reduced matrix elements of the dipole moment operator.

Transition Matrix element

1s3p 3P0→1s3s 3S1 26.4797
1s3p 3P2→1s3s 3S1 214.489
1s3p 3P0→1s3d 3D1 8.2923
1s3p 3P2→1s3d 3D1 1.8542
1s3p 3P2→1s3d 3D2 7.1805
1s3p 3P2→1s3d 3D3 16.994
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TABLE II. Contributions of theS and D states of the intermediate spectrum to the polarizability of
1s3p 3P0 state of helium.

n8 1sn8s 3S1 (l050.698) 1sn8s 3S1 (l0520.302) 1sn8s 3S1 1sn8d 3D1

2 20.34 21.67 21.57
3 22377.93 22682.56 22638.45 18 742.21
4 451.87 319.37 312.17 623.53
5 25.38 18.27 17.92 86.01
6 6.36 4.60 4.72 27.16
7 2.59 1.88 1.85 12.29
8 1.34 0.97 0.96 6.72
9 0.79 0.57 0.57 4.13
10 0.51 0.37 0.34 2.59

Total 21888.6 22337.7 22301.50 19 540.63
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To test the above results, we did alternative polariza
ity calculations using the method of the Green’s functions
an optical electron to sum over the complete intermedia
states spectrum in~9!.

Note that the correct selection of the initial analytic
representation of the Green’s functionsGE(r1 ,r2) plays an
important role in specific polarizability calculations, since
makes it possible to obtain the result in the form most ra
nal and convenient for further applications. In this paper
have taken the Green’s function for the Fuss model poten
from Ref. 14. The angular part ofGE(r1 ,r2) is simply the
product of spherical harmonics, while for the radial p
gl(E;r 1 ,r 2) we have taken an expansion in Sturm functio
which have only a discrete spectrum:15

GE~r1 ,r2!5(
lm

gl~E;r 1 ,r 2!Ylm~n1!Ylm* ~n2!, ~14!

gl~E;r 1 ,r 2!5
4Z

n (
k50

`
Ukl~2Zr1 /n!Ukl~2Zr2 /n!

k1l l112n
, ~15!

wheren5Z/A22E, and

Ukl~x!5A k!

G~k1212l l !
xl l expS 2

x

2D Lk
2l l11

~x!.

~16!

The radial wave functionsRnl(r ) are obtained from the resi
dues of the Green’s function at the poles
gl(E;r 1 ,r 2): n5nnl5nr1l l11, with nr50,1,2, . . . the

TABLE III. Contributions of theSandD states of the intermediate spectru
to the polarizability of the 1s3p 3P2 state of helium.

n8 1sn8s 3S1 1sn8d 3D1 1sn8d 3D2 1sn8d 3D3

2 21.57
3 22638.76 187.32 2809.37 15 735.95
4 312.15 6.23 93.52 523.74
5 17.92 0.86 12.90 72.25
6 4.72 0.27 4.07 22.81
7 1.85 0.12 1.84 10.32
8 0.96 0.07 1.01 5.65
9 0.57 0.04 0.62 3.47
10 0.34 0.03 0.39 302.17

Total 22301.83 194.94 2923.72 16 376.36
l-
f
-

l

-
e
al

t
,

radial quantum number,l l the effective orbital angular mo
mentum, andnnl the effective principal quantum number i
the formula for the energy of the atomic stateunl&,

Enl52
Z2

2nnl
2

. ~17!

Here and in~15!, Z is the charge of the residual ion. Th
explicit expression forRnl(r ) coincides in form with hydro-
genlike wave functions:23

Rnl~r !5
2Z3/2

nnl
2

Unr l S 2Zr

nnl
D . ~18!

The parameterl l ( l may represent a specific set of spin
orbit quantum number, in addition to representing a spec
angular momentum! can be found by comparing~17! with
experimental values of the lowest state of a valence elec
with a givenl ~see Ref. 23!. The radial quantum numbernr

of this state is assumed to be zero. As shown by Simons,8 l l

represents the entire experimental spectrum of the a
fairly well ~in most cases the weak dependence ofl l on the
position of the energy level can be ignored!.

With such a definition ofl l for atomic series whose
lowest states are the ground and the metastable, the err
calculating the radial matrix elements^nlur Lun8l &L>1 with
wave functions~18! may reach 50%. In view of this we
formulated a modified approach to the definition ofnr andl l

in these series,24 which allowed us to significantly refine th
calculations of the spectroscopic characteristics of atom
ground and excited states. Here the radial quantum num
of the lowest state~ground or metastable! of the series is
assumed to be unity, so that the effective orbital angu

TABLE IV. Scalar and tensor polarizabilities of the helium atom.

Quantity Numerical value

a3 3P0

s 17 203

a3 3P2

s 17 191

Da5a3 3P0

s
2a3 3P2

s 10

a3 3P2

t 351.65

F̄ 0.29 34331024

5150.99 kV cm21
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momentuml l is equal tong22, with ng the effective prin-
cipal quantum number of the lowest state. Note that the w
function of the lowest level atnr51 coincides precisely with
the wave function obtained by the quantum-defect metho
atoms.25

Thus, the sets of states of an atom with spin–orbit qu
tum numbers of the ground and metastable levels are, str
speaking, incomplete since they do not contain states w
nr50. Hence the radial Green’s functions in the subspace
the series in question contain additional ‘‘imaginary’’ term
with nr50 and an effective principal quantum numbern im

5ng21. The binding energy of the ‘‘imaginary’’ state, de
fined in ~17!, is almost ten times higher than the excitati
energy of any level in a series, so that its contribution to
optical-transition amplitude can be ignored.

Note also that the wave function of a valence electron
state unl& has the correct sign in the asymptotic regi
~which provides the principal contribution to multiple matr
elements! only if we multiply it by an addition phase facto
(21)k, wherek5n2nr2 l 21.

The second and third columns of Table II contain t
contributions of the intermediate 1sn8s 3S1 states to the sca
lar polarizability of the 1s3p 3P0 state calculated by the tra
ditional and modified approaches, which yield values ofl0

equal to 0.698 and20.302, respectively. A comparison wit
the data of precise variational calculations~the fourth col-
umn in Table II! suggests that the discrepancy of the fin
results is less than 2% if the valuel0520.302 is used,
while calculations withl050.698 yield an error exceedin
20%.

The results of polarizability calculations based on t
use of Green’s functions in the method of the Fuss mo
potential are listed in Table V. The numerical discrepanc
of the data of Tables IV and V are due, on the one hand
the semiempirical approximation of the model potent
method and, on the other, to the allowance for the contri
tion of the continuous spectrum in the Green’s functio
method. Note that the results for the difference of sca
polarizabilities and for the tensor polarizability of th
1s3p 3P2 state differ from those in Table IV only by 10%
To obtain numerical values of the difference of scalar po
izabilities with an accuracy of about 1%, the calculations
the radial integral should be done with an accuracy of five
six figures, since, as Table V implies, the first three sign

FIG. 1. Dependence ofd ~in atomic units! on the electric field strengthF in

the vicinity of anticrossingF̄.
e
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cant figures cancel out. This loss of accuracy can be avo
if we expand the polarizabilities as functions of the energy
an atomic level in a Taylor series. The calculation then
duces to finding the energy derivatives of the polarizabiliti
and these can be expressed in terms of third-order dip
matrix elements with two Green’s functions, which, in pa
ticular, enter into the expression for the hyperpolarizabil
of the atomic states.26

It is no accident that the numerical results in Tables
and V arer close, since the model potential method yield
correct dependence in the higher-order matrix elements
the energy of the atomic levels,23 provided that we use the
exact ~experimental! values for the energies of the fine
structure sublevels. This condition makes it possible to t
into account the contributions of relativistic and correlati
effects in the model potential method. Furthermore, us
this method, one can easily show that the states belongin
a complete set and not taken into account in relativistic c
culations~the states belong to the continuum and to the d
crete spectrum withn8.10) contribute no more than 0.2%
to the numerical values of the quantities considered here
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1!Here and in the text that follows we use the atomic system of units.
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