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High-precision atomic clocks with highly charged ions: Nuclear-spin-zero f 12-shell ions
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Optical atomic clocks using highly charged ions hold an intriguing promise of metrology at the 19th significant
figure. Here we study transitions within the 4f 12 ground-state electronic configuration of highly charged ions.
We consider isotopes lacking hyperfine structure and show that the detrimental effects of coupling of electronic
quadrupole moments to the gradients of a trapping electric field can be effectively reduced by using specially
chosen virtual clock transitions. The estimated systematic fractional clock accuracy is shown to be below 10−19.
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Developing accurate atomic clocks is important for both
technological and fundamental reasons. The cesium primary
frequency standard which is currently used to define the SI
units of time and length has fractional accuracy of the order of
10−16 [1]. State-of-the-art clocks using trapped singly charged
ions have demonstrated fractional accuracies at the level of
10−17 [2]. Frequency standards based on neutral atoms trapped
in an optical lattice aim at a fractional accuracy of 10−18 [3].
Further progress is possible with clocks using a nuclear optical
transition [4] or clocks using optical transitions in highly
charged ions [5–9].

In our previous paper [8] we proposed ion clocks based on
optical transitions in trapped highly charged ions (HCIs). A
clock HCI is cotrapped with a lighter singly charged ion (e.g.,
Be+) which is used for sympathetic cooling of the HCI and
quantum-logic clock readout and initialization. We identified
HCIs with the 4f 12 ground-state configuration to be especially
promising for precision timekeeping. It was demonstrated that
such ions can serve as a basis of a clockwork of exceptional
accuracy, with fractional uncertainty of about 10−19. One of
the most important systematic effects was determined to be the
frequency shift due to interaction of ionic quadrupole moments
with gradients of the trapping electric field. It was suggested to
use combinations of different hyperfine transitions to suppress
this shift.

Here we analyze similar 4f 12 HCIs but propose another
approach to suppressing the quadrupole shift. Instead of using
different hyperfine transitions we combine transitions between
states of different projections of the total angular momentum.
We focus on isotopes with zero nuclear spin. Since these lack
a complicated hyperfine structure, the processes of initializing
the clock becomes easier. Also the detrimental second-order
ac Zeeman shift becomes substantially suppressed. In the end,
compared to the original proposal [8], our current scheme can
be easier to implement and can have higher accuracy.

The electronic states arising from the 4f 12 configuration
have some unique features which make them convenient when
building very accurate atomic clocks. First, transitions within
these configuration are always in the optical or near-IR region
practically for any ionization degree. Second, there is always
a metastable state in this configuration with long enough life
time to be used as a clock state. The latter can be understood
using simple arguments. The fine structure of the 4f states in
the highly charged ions is large and the lowest states of the
4f 12 configuration can be considered as the states of the two-

hole states of the 4f 2
7/2 relativistic configuration. The states

of this configuration can have the total angular momentum
J = 6,4,2,0. According to Hund’s rules, the J = 6 state is
the ground state and J = 4 state is the first excited state. The
excited state can only decay to the ground state via electric
quadrupole transition which is suppressed due to the small
size of the HCI and relatively small frequency. This makes it
a very long living state, suitable for an atomic clock.

Similar consideration holds for any ions with the nl2 (l =
1,2,3) two-electron or two-hole ground-state configuration,
e.g., 4f 2, nd8, and nd2 (n = 3,4,5), and np4 (n = 2,3,4,5,6).
However, the radiative width of the states tends to increase
with the decreasing value of the total angular momentum. For
example, the width of the states of the 4f 2 configuration (4f 2

5/2
electron states) is roughly one order of magnitude larger than
the width of the states of the 4f 12 configuration (4f 2

7/2 hole
states). The width of the states of the 4d8 configuration (4d2

5/2

hole states) is close to those of the 4f 2 configuration. But the
width of the states of the 4d2 configuration (4d2

3/2 electron
states) is larger again. For this reason in the present paper we
only consider the states of the 4f 12 configuration which can
be used to build the most accurate HCI optical clocks.

In this paper, we study ions which have the electron con-
figuration of palladium or cadmium plus twelve 4f electrons:
[Pd]5s24f 12 or [Pd]4f 12. The [Pd]4f 12 configuration is the
ground-state configuration for all ions starting from Re17+
which have nuclear charge Z � 75 and degree of ionization
Zi = Z − 58. These are not the only ions which have the 4f 12

configuration in the ground state. For example, neutral erbium
has the [Xe]4f 126s2 ground-state configuration, Er III ions has
the [Xe]4f 12 ground-state configuration, etc. Many properties
of these ions and neutral erbium are very similar to those of the
HCIs. However, HCIs are naturally more suitable for accurate
timekeeping because of their smaller electronic-cloud size and
thereby suppressed couplings and lower sensitivity to external
perturbations.

Table I lists relevant properties of the most abundant
stable even-even isotopes of the HCIs which have the 4f 12

configuration of the ground state. All enumerated isotopes
have a vanishing nuclear spin. Numerical calculations were
carried out with the version of the configuration interaction
(CI) method described in [10,11].

In the present paper we consider ions qualitatively, without
trying to achieve high accuracy of the calculations. Therefore,
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TABLE I. Properties of clock transitions in even-even isotopes
(nuclear spin I = 0) of highly charged ions with the 4f 12 ground-
state configuration of valence electrons. The complete ground-state
configuration is [Pd]5s24f 12 for Hf12+ and W14+ and [Pd]4f 12

for other ions. �E is the energy interval between the ground and
the excited clock states, λ is the corresponding wavelength, � is
the radiative width of the clock state, τ is its lifetime, and Q is the
quality factor (Q = ω/�). Numbers in square brackets represent
powers of 10.

�E λ � τ

Z Ion (cm−1) (nm) (μHz) (days) 1/Q

72 180Hf12+ 8555 1168 9.5 4.6 3.7[−20]
74 184W14+ 9199 1087 9.6 4.6 3.5[−20]
76 192Os18+ 9918 1008 13.6 3.2 4.6[−20]
78 194Pt20+ 10411 960 13.5 3.3 4.3[−20]
80 202Hg22+ 10844 922 13.2 3.4 4.1[−20]
82 208Pb24+ 11257 888 12.8 3.4 3.8[−20]
84 208Po26+ 11624 860 12.3 3.6 3.5[−20]
88 226Ra30+ 12275 814 11.2 3.9 3.1[−20]
90 232Th32+ 12567 795 10.7 4.1 2.8[−20]
92 238U34+ 12841 778 10.2 4.4 2.6[−20]

we consider only the mixing of all relativistic configurations
corresponding to a single nonrelativistic 4f 12 configuration.
These are the 4f 6

5/24f 6
7/2, 4f 5

5/24f 7
7/2, and 4f 4

5/24f 8
7/2 config-

urations. the standard CI technique is used to construct the
states of definite value of the total angular momentum J . In
this paper we are interested only in ionic parameters which
are determined by matrix elements of the electric quadrupole
operator for the states of the 4f 12 configuration. From our
previous similar calculations [8] we know that mixing with
configurations involving excitations from the 4f subshell have
little effect on these matrix elements.

To check the accuracy of such approach we performed test
calculations for the Er I atom and Er III ion which have the
6s24f 12 and 4f 12 configurations of their ground states. The
calculated frequency for the clock transition in these systems
turned out to be about 20% larger than the experimental
one [12]. A better accuracy should be expected for the ions
considered in present paper since the central field for valence
electrons in ions is stronger. The 20% uncertainty for the
frequency translates to the factor 2.5 uncertainty for the width,
lifetime, and quality factor [see formula (1)]. Note that if like
for Er I and Er III, the calculated frequency is larger than the
real one, then the parameters of the clock transitions are even
better than those presented in Table I.

There is also some uncertainty in the transition probability
due to uncertainty in the calculated E2 transition amplitude.
However, this uncertainty is relatively small. If we use non-
relativistic notations, as for Er I and Er III, the clock transition
is between the 3H6 and 3F4 states. The change in approximate
quantum numbers �S = 0 and �L = 2 is consistent with the
selection rules for the electric quadrupole transition. Therefore,
there is no reason for the amplitude to be small. Numerical
calculations show that the amplitude is of the same order
as diagonal matrix elements of the E2 operator (quadrupole
moments). The accuracy for nonsuppressed amplitudes is

TABLE II. Electric quadrupole moments of the ground (J = 6)
and excited (J = 4) clock states for ions from Hf12+ to U34+ and the
amplitude of the E2 transition between the states. The numbers are
in atomic units.

Ion Q6 Q4 Q6/Q4 〈6||E2||4〉
Hf12+ 0.2276 −0.0132 −17.2 0.3240
W14+ 0.1879 −0.0137 −13.7 0.2715
Os18+ 0.1837 −0.0151 −12.1 0.2680
Pt20+ 0.1611 −0.0141 −11.4 0.2364
Hg22+ 0.1430 −0.0130 −11.0 0.2106
Pb24+ 0.1282 −0.0120 −10.7 0.1892
Po26+ 0.1158 −0.0110 −10.5 0.1712
Ra30+ 0.0965 −0.0093 −10.4 0.1427
Th32+ 0.0888 −0.0086 −10.3 0.1312
U34+ 0.0821 −0.0080 −10.3 0.1212

about 10% [13]. This corresponds to the 20% uncertainty in
the transition probability.

The probability of the electric quadrupole (E2) transition is
given by (we use atomic units: h̄ = 1, me = 1, |e| = 1)

�e = 1

15
α5ω5

eg

〈e||E2||g〉2

2Je + 1
. (1)

Here g is the ground state and e is the excited metastable
state, α ≈ 1/137.036 is the fine structure constant, and ωeg is
the frequency of the clock transition. The electric quadrupole
operator is defined in length form as E2m = r2Y2m(θ,φ). A
typical value of frequency for the considered transitions is
ωeg ∼ 0.1 a.u., the amplitude of the E2 transition 〈e||E2||g〉 �
1 a.u., Je = 4. This leads to �e ∼ 10−21 a.u. (∼10 μHz) and
Q = ωeg/�e ∼ 1020 (see Table I).

The main factors which may affect the performance of
the clocks are quadrupolar shift, blackbody radiation (BBR),
static and dynamic Stark shifts, Zeeman shift, and the effect of
micromotion. All these and additional effects were considered
in detail in our previous paper [8]. Here we focus on the electric
quadrupole shift using an alternative approach.

Electric quadrupole shift. One of the most important
systematic effects is the clock frequency shift due to the
interaction of ionic quadrupole moments with the gradients of
a trapping electric field. In our previous paper [8] we suggested
using the hyperfine structure of the clock states to suppress the
shift. Here we explore a different approach based on combining
transition frequencies between states of different projections
of the total angular momentum J .

The coupling of the Q moment to the E field gradient
∂Ez/∂z reads (z is the quantization axis determined by
externally applied B field)

HQ = −1

2
Q

∂Ez

∂z
. (2)

The quadrupole moment Q of the atomic state is defined
conventionally as twice the expectation value in the stretched
state

QJ = 2〈nJM = J |Q0|nJM = J 〉. (3)

Calculated values of Q for the ground Q6 and excited Q4 states
are compiled in Table II. The uncertainty for their values is
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TABLE III. Transitions convenient for use to suppress the electric quadrupole shift. J1,M1 are the total angular momentum and its projection
for the ground state, J2,M2 are the total angular momentum and its projection for the clock state, A is given by Eq. (8), c1 = 1/(1 − A),
c2 = A/(A − 1) (ω0 = c1ω1 + c2ω2). We consider extreme values of Q6/Q4 from Table II.

Q6/Q4 = −17 Q6/Q4 = −10

J1,M1–J2,M2 J1,M
′
1–J2,M

′
2 A c1 c2 A c1 c2

6,2–4,0 6,5–4,4 −0.9351 0.5168 0.4832 −0.9578 0.5108 0.4892
6,2–4,1 6,5–4,4 −0.9494 0.5130 0.4870 −0.9846 0.5039 0.4961
6,2–4,2 6,5–4,4 −0.9922 0.5020 0.4980 −1.0649 0.4843 0.5157
6,2–4,3 6,5–4,3 −0.9669 0.5084 0.4916 −1.0096 0.4976 0.5024

expected to be on the same level as for the energies (<20%).
Note that we actually need only the ratio Q6/Q4 (see below).
The uncertainty for the ratio is likely to be significantly smaller
than those for each of the moments Q6 and Q4 [14].

Typical values of the gradient ∂Ez/∂z ≈ 108 V/m2 and Q
moments from Table II one can get, e.g., for Os18+

(
�ν

ν

)
∼ 10−16, (4)

which is well above the sought fractional accuracy level.
The Q-induced energy shift for a state with total angular

momentum J and its projection Jz = M reads

δEJM ∼ 3M2 − J (J + 1)

3J 2 − J (J + 1)
QJ

∂Ez

∂z
≡ CJMQJ

∂Ez

∂z
. (5)

The clock frequency of the transition between two states J1,M1

and J2,M2 can be expressed as

ω = ω0 + (
CJ1,M1QJ1 + CJ2,M2QJ2

) ∂Ez

∂z
, (6)

where ω0 is the unperturbed clock frequency. The uncertainty
due to the electric quadrupole shift can be eliminated if two
transitions between states with different projections M are
considered. Indeed, using the expression (6) for two transitions
J1,M1–J2,M2 with frequency ω1 and J1,M

′
1–J2,M

′
2 with

frequency ω2 one can find the unperturbed frequency ω0:

ω0 = ω1 − Aω2

1 − A
, (7)

where

A = CJ1,M1 (QJ1/QJ2 ) + CJ2,M2

CJ1,M
′
1
(QJ1/QJ2 ) + CJ2,M

′
2

. (8)

Expressions (7) and (8) do not depend on the E-field gradient.
The uncertainty due to the quadrupole shift can be elimi-

nated if quadrupole moments of both states are known. To be
precise, we only need to know their ratio. In the approximation
of pure two-hole configuration 4f 2

7/2 this ratio can be found
analytically. The quadrupole moment for a state with total
angular momentum J is given by

QJ = −(2J + 1)

(
J 2 J

−J 0 J

){
J 2 J

j j j

}
〈j ||E2||j 〉.

(9)

Here J = 6 or 4 and j = 7/2, where j is the total angular
momentum of the hole state 4f7/2. It follows from Eq. (9) that
Q6/Q4 = −11. For this value of the ratio, the quadrupole shift

is canceled out by simple averaging of the frequencies of the
two transitions M1 = 2,M2 = 3 and M ′

1 = 5,M ′
2 = 3:

ω0 = (ω1 + ω2)/2, (10)

where

ω1 = E(J = 4,M = 3) − E(J = 6,M = 2),
(11)

ω2 = E(J = 4,M = 3) − E(J = 6,M = 5).

The true value of the Q6/Q4 ratio may differ from the
approximate value of −11 (see Table II) mostly due to the
admixture of the 4f7/24f5/2 configuration. If this ratio is
known (from calculations or measurements), the use of Eqs. (7)
and (8) ensures accurate cancellation of the quadrupole shift.
Table III lists some convenient E2-allowed transitions.

Note that the computed ratio Q6/Q4 varies relatively little
from ion to ion. For all ions with the [Pd]4f 12 configuration
of the ground state (from Os18+ to U34+), it is within 10% of
the analytical value of −11. For all these values the use of
simplest case [Eqs. (10) and (11)] leads to at least two orders
of magnitude suppression of the quadrupole shift.

Other systematics. Systematic effects which can affect the
performance of the ionic clocks with the 4f 12 configuration of
the ground state were studied in detail in our previous work [8].
In addition to electric quadrupole shift considered above, they
include the frequency shift due to black-body radiation (BBR),
Zeeman shift, Doppler effect, and gravity. Actual estimations
were done for the Os18+, Bi25+, and U34+ ions and discussed
in detail for the Bi25+ ion. It was clear from the analysis that
parameters of the ions vary relatively little from one ion to
another and the analysis performed in [8] is valid for all ions
considered in the present paper.

Compared to Ref. [8], the absence of a hyperfine structure in
the presently considered isotopes modifies analysis of second-
order Zeeman shifts. The second-order ac Zeeman shift was

TABLE IV. Other frequency shifts reestimated from Ref. [8].

Effect Shift Condition

BBR 1.8 × 10−21− T = 300 K
6.6 × 10−20

Quadratic Zeeman <10−24 Bac < 10−7 T
Micromotion 10−19 Mass scaling from Al+a

Gravity 10−19 �h = 1 mmb

aReference [15].
bChange of height.
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estimated in [8] assuming the value of the magnetic field Bac =
5 × 10−8 T measured in the Al+ + Be+ trap [15] and found to
be 4 × 10−20. Note, however, that the second-order Zeeman
shift is strongly enhanced in ions considered in [8] due to
small energy intervals between states of the hyperfine structure
multiplet. In the present paper we focused on ions lacking a
hyperfine structure. This means that the second-order Zeeman
shift is further suppressed for these ions by several orders of
magnitude. This is an important advantage for using these
ions. The estimated values for important frequency shifts are
summarized in Table IV.

It was shown in [8] that all other systematic effects produce
a fractional frequency shift which is below the value of 10−19.
We anticipate that due to the simplified level structure of
nuclear-spin-zero isotopes, the present work may provide a
simpler and potentially more accurate route to HCI-based
clocks that can carry out metrology to the 19th significant
figure.
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