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Intensity landscape and the possibility of magic trapping of alkali-metal Rydberg atoms
in infrared optical lattices
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Motivated by compelling advances in manipulating cold Rydberg (Ry) atoms in optical traps, we consider the
effect of the large extent of a Ry electron wave function on trapping potentials. We find that, when the Ry orbit
lies outside inflection points in the laser intensity landscape, the atom can stably reside in laser intensity maxima.
Effectively, the free-electron ac polarizability of the Ry electron is modulated by the intensity landscape and
can accept both positive and negative values. We apply these insights to determining the magic wavelengths for
Ry-ground-state transitions for alkali-metal atoms trapped in infrared optical lattices. We find magic wavelengths
to be around 10 μm with exact values that depend on Ry-state quantum numbers.
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Magic trapping [1] of cold atoms and molecules is a
powerful technique that has recently enabled ultrastable optical
lattice clocks [2–4], long-lived quantum memory [5], and pre-
cision manipulation of ultracold molecules [6]. When neutral
atoms are trapped, their internal energy levels are necessarily
perturbed by spatially inhomogeneous trapping fields. For a
cold-atomic cloud, typical milli-Kelvin temperatures translate
into the 10-MHz trap depths. In other words, as the atom travels
about the trap, its energies are modulated at the 10-MHz level
with associated coherence times of just 100 ns. If it were
not for magic trapping techniques, such decoherences would
be prohibitive for the enumerated cold-atom applications.
The key idea of magic trapping is the realization that one
is interested in differential properties of two levels, such
as the clock frequency or a differential phase accumulated
by two qubit states. Then if the trapping field affects both
levels in the very same way, the differential perturbations
vanish. Such engineered traps are commonly referred to as
magic. These ideas enabled precision clock spectroscopy at
the sub-100-mHz level [3] and second-long coherence times
[5], orders of magnitude better than the quoted “nonmagic”
values.

Application of magic trapping techniques to Rydberg (Ry)
states of alkali-metal atoms has turned out to be challeng-
ing. Generic quantum-information protocols involve qubits
encoded in hyperfine manifolds of the ground state (GS)
and conditional multiqubit dynamics mediated by interactions
of Ry states [7–10]. Therefore, the trapping field must be
magic both for the GS hyperfine manifolds and for the GS-Ry
transition [11]. The first part by itself is a nontrivial problem
and has been the subject of several studies [5,12–15]. The
GS-Ry transition presents another challenge [11,16–18].

To appreciate the problem, let us first review commonly
invoked arguments. In optical fields, the trapping potential is
proportional to the ac polarizability α(ω), leading to trapping
potential U (R) = −α(ω)F 2(R)/4, where F is the local value
of the electric field.1 The GS polarizability is αg(ω) > 0
when red detuned from atomic resonances, and the atoms

1Unless specified otherwise, atomic units |e| = h̄ = me ≡ 1 are
used throughout the paper.

are attracted to intensity maxima. On the other hand, a
loosely bound Ry electron is nearly “free”; therefore, its
polarizability αr (ω) ≈ −1/ω2 is negative, and the atoms are
pushed towards intensity minima. Then as the GS population is
driven to a Ry state during gate operations, an atom experiences
a time-varying trapping potential. This causes undesirable
motional heating. The resulting decoherence is so severe that
experimentalists simply turn off trapping fields during GS-Ry
excitations [10,17,18]. This process is also detrimental because
this again leads to heating. Such a “pulsed” operation of the
trap is the leading heating mechanism in gate experiments with
heating rates of ∼1% per gate cycle [17]. In addition, there
is the problem of scalability: It is impossible to turn off the
trapping field at individual trapping sites, therefore, the entire
ensemble becomes heated during pulsed trap operations [18].

One way to evade the ac Stark shifts is to use blue-detuned
bottle beam traps [19]. Here, the atoms are trapped in intensity
minima. Experimentally, such a multitrap setup is arguably
more challenging than using optical lattices as discussed
below.

Because of the GS-Ry polarizability sign difference, it is
usually accepted that magic trapping in red-detuned fields
is unattainable (see, however, Ref. [20] for evidence to the
contrary). Here we present clear arguments that Ry atoms
can, in fact, be attracted to intensity maxima and demonstrate
trapping of GS and Ry states in red-detuned magic infrared
(IR) lattices.

We start by presenting a qualitative argument (see Fig. 1)
that makes the underlying physics transparent. First of all, one
realizes that the Ry wave function is spread over long distances
that can be comparable to the spatial scale of the laser intensity
variations. For example, for a lattice formed by cw lasers
of wavelength λ, the laser intensity is spatially modulated
with a lattice constant λ/2: F 2(z) = F 2

0 sin2(kz), k = 2π/λ.
The Ry orbit is larger than the lattice constant if its principal
quantum number is n >

√
λ/(3a0)/2, e.g., n � 100 for λ =

10 μm. As a result, the ponderomotive potential experienced
by the nearly free electron must be averaged over local field
intensities [18,21,22],

U (R) = 1

4ω2

∫
d3re|�(re)|2F 2(R + re). (1)
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FIG. 1. (Color online) Influence of Ry orbit size on the stability
of atomic motion at the 1D lattice antinode for a toy model of a
Ry atom. The vertical axis is the laser intensity I (z). The electron
cloud is localized in two “lumps”. The optical dipole force exerted on
each lump is directed towards the nearby intensity minimum and is
proportional to the local intensity slope dI (z)/dz. When the Ry orbit
size is 2ze < λ/4 [panel (a)], the fR and fL acting on the localized
lumps of electron density pull the atom away from the intensity
maximum (unstable equilibrium). When 2ze > λ/4 [panel (b)], they
act as restoring forces with the Ry atom stably resting at the intensity
maximum.

Here R is the position of the atomic core in the laboratory
frame, re is the Ry electron coordinate relative to the core, and
|�(re)|2 is the Ry electron probability density.

An illustration of the interplay between the Ry orbit size and
the lattice constant can be made for a one-dimensional (1D)
optical lattice and a toy model of a Ry atom, (see Fig. 1). Here
|�(ze)|2 is localized in two lumps positioned symmetrically
(at relative distances ±ze) about the core. The optical dipole
force acting on each lump is transferred to the core by the
Coulomb interaction so that the net force on the atom centered
at Z reads

fz(Z) = − 1

8ω2

(
dF 2

dz

∣∣∣∣
z=Z+ze

+ dF 2

dz

∣∣∣∣
z=Z−ze

)
. (2)

Because of the symmetry, this force vanishes at the nodes and
antinodes of the lattice. In Fig. 1, we investigate the stability
of the atomic motion at intensity maxima. It is clear that, for
small Ry orbits, the Ry atom is expelled to a nearby antinode
as commonly expected. When 2ze = λ/4, the two lumps sit
initially (Z = 0) at inflection points in the intensity profile, and
the atom experiences no net force regardless of displacement.
However, as the size of the Ry orbit is increased (2ze > λ/4),
the atom stably resides in intensity maxima. As the atom is dis-
placed in some direction, the wave-function lump on the side
opposite the displacement experiences a larger dipole-force
tug towards the nearby node, resulting in a restoring force.

From this model, we can generalize to an arbitrary three-
dimensional laser intensity landscape: a Ry atom is drawn
to intensity maxima if, in an equilibrium position [where
∇I (R) = 0], the bulk of the Ry wave function straddles outside
of the nearby surface of inflection points in the intensity

landscape, parametrically given by �I (r) = 0. For example,
for a two-dimensional Gaussian intensity cone I (x,y) =
I0 exp[−(ρ/ρ0)2], the radius of the Ry orbit must be greater
than ρ0(

√
3 − 1)/2a0. Then a Ry atom can be attracted to the

intensity maximum, and its motion can be guided by the beam.
Now we explicitly compute the trapping potential. Integrat-

ing over lumps in Eq. (1),

Ut (Z) = F 2
0

4ω2
[sin2(kze) + cos(2kze) sin2(kZ)]. (3)

There are two distinct contributions, Ut (Z) = U 0
t +

UZ
t sin2(kZ): The U 0

t term is a uniform shift across the lattice,
and the second contribution is proportional to the standing-
wave intensity. The uniform offset does not affect atomic
motion as it does not contribute to the force (2). The lattice
depth prefactor UZ

t = F 2
0 /4ω2 cos(2kze) shows that the atoms

are attracted to lattice nodes if cos(2kze) > 0, i.e., when p −
1/4 < 2ze/λ < p + 1/4, p = 0,1,2, . . . . Otherwise, atoms
reside at antinodes. At critical values of 2ze/λ = (p + 1/2)/2,
the trapping potential vanishes altogether, and the atom
travels through the lattice uninhibited. These observations are
consistent with our dipole-force analysis in Fig. 1. As we
increase the principal quantum number and the orbit grows
larger, the atoms initially stably reside at nodes. Then as
2ze reaches λ/4, the atoms move freely and then are pushed
towards the antinodes. This pattern repeats itself with a further
increase in the Ry orbit size.

Having qualitatively understood the nature of various
trapping regimes, we now proceed with a rigorous evaluation
of trapping potentials for realistic Ry atoms [23]. One starts
with the Hamiltonian (pe − A/c)2/2, where pe is the electron
momentum and A is the vector potential. Upon expanding
the square, we encounter the kinetic-energy term pe · A cross
terms and an A2 contribution. It is the A2 term in the Coulomb
gauge that leads to the ponderomotive potential, and in the
lowest-order perturbation theory, we recover Eq. (1). Further
discussion of the validity of this approximation can be found
in Ref. [24].

Explicitly evaluating the integral (1), we find that the Ry
atom potential in a 1D lattice is identical to that of our toy
problem in Eq. (3) but with potential shift and depth redefined
in terms of expectation values,

UZ
r = F 2

0

4ω2
〈nlm| cos(2kze)|nlm〉 ≡ −αlsc

r (ω)
F 2

0

4
, (4)

U 0
r = −αlsc

r (ω) − αe(ω)

2

F 2
0

4
(5)

for a Ry state |nlm〉. Here we introduced the effec-
tive intensity landscape-averaged polarizability αlsc

r (ω) =
−〈cos(2kze)〉/ω2, which unlike the free-electron polarizability
αe = −1/ω2, can accept both positive and negative values.
One can view αlsc

r as landscape-modulated free-electron polar-
izability as αlsc

r = 〈cos(2kze)〉αe(ω) and |αlsc
r (ω)| � |αe(ω)|.

The optical potential is Ur (Z) = U 0
r + UZ

r sin2(kZ). As in
our toy model, the potential consists of a term that depends
on the position of the atom in the lattice and a uniform offset
U 0

r . Note that, without properly accounting for the finite size
of the Ry cloud, one would conventionally write U conv

r (Z) =
F 2

0 /(4ω2) sin2(kZ). The two potentials, conventional and
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FIG. 2. (Color online) The “landscape-modulated” polarizability
αlsc

r for ns states of Rb with n = 100 (dashed orange line), 160 (dashed
black line), and 180 (dashed blue line). The scalar ground-state
polarizability αg (solid red line) and the free-electron polarizability
αe (dashed gray line) are also shown. The magic wavelengths can be
found for all n � 154 in the infrared wavelength range spanning the
CO2 and the frequency-doubled CO2 laser bands.

ours, are equal only in the limit 〈re〉 � λ as U 0
r → 0, and

UZ
r → F 2

0 /(4ω2) in this limit. Our potential can support stable
equilibrium in lattice antinodes, whereas, the conventional
potential does not.

The expectation value of cos(2kze) can be evaluated by
expanding cos(2kze) over spherical Bessel functions. For
example, for l = 0 states,

〈ns| cos(2kze)|ns〉 =
∫ ∞

0
dreP

2
ns(re)j0(2kre). (6)

Here Pns(re) is the radial wave function of the Ry electron; we
computed Pns(re) using well-known model potentials [25].

Our computed landscape-averaged polarizabilities for sev-
eral Ry states are shown in Fig. 2. For all the Ry states, αlsc

r

is essentially zero at wavelengths below ∼1000 nm and starts
oscillating with increasing amplitude before dropping off like
αe(ω).

By recasting αlsc
r (ω) = −[1 − 2〈sin2(kze)〉]/ω2, one could

conclude [23] that 〈sin2(kze)〉 ≈ 1/2 for λ � 〈re〉 so that
αlsc

r ≈ 0. As λ is increased, kze gets smaller, and 〈sin2(kze)〉 �
1, resulting in αlsc

r → αe. This explains the short- and long-
wavelength behavior of αlsc

r (ω) in Fig. 2. As for the n

dependence of αlsc
r , one could show, on general grounds,

that 〈cos(2kze)〉 = f [(n∗)2a0/λ], where f is some universal
function of the effective quantum number n∗. Thus, our
discussion is applicable to all Ry atoms.

A possible detrimental effect on the gate fidelity can arise
if the wave functions of the Ry atoms trapped at adjacent
lattice sites start to overlap. In order to avoid such overlaps,
one can fill in the optical lattice by leaving lattice site(s)
between trapped atoms empty. Such experimental capabilities
have been demonstrated [26]. Furthermore, the Rydberg
blockade mechanism, central for the gate operations, relies on
the repulsive long-range interaction [27]. Penning ionization
requires the close approach of two atoms, so the rate is
suppressed. As experimentally shown in Ref. [28], since the

collisional ionization requires attractive potentials, the Ry
states first need to be redistributed (mainly by black-body
radiation (BBR) [25]) to populate Ry states that would
correlate to attractive molecular potentials at long range.
Therefore, decoherence rates due to ionization are limited
from above by the BBR-induced decoherences. BBR-induced
decoherences were studied in Ref. [17]: At room temperature,
the Ry-state lifetime is greater than 0.1 ms for n > 65. Thereby,
collisional ionization, being the secondary step, is not an issue
for Ry gates.

Now since αlsc
r (ω) can become positive, we show that the

GS and Ry potentials can be matched at red-detuned magic
wavelengths. For the GS atoms, the trapping potential reads

Ug(Z) = −F 2
0

4
αg(ω) sin2(kZ), (7)

with the dynamic polarizability (D is the dipole operator and
Ei’s are atomic energy levels),

αg(ω) =
∑

i

(Eg − Ei)|〈ψg|D|ψi〉|2
(Eg − Ei)2 − ω2

. (8)

We evaluated αg(ω) with a high-accuracy procedure [29].
The two spatial parts of Ry and GS potentials match

when UZ
r = UZ

g , which is attained at magic values of laser
frequencies ω∗ when αg(ω∗) = αlsc

r (ω∗). In Fig. 2, we plot
both polarizabilities to search for such magic wavelengths λ∗.
We find that, for Rb ns states, the two curves cross for all
n � 154 with λ∗ � 5600 nm for n = 154. Above this critical
value of n, there are at least two values of λ∗ (e.g., αlsc

r for the
160s and 180s states cross twice with the GS polarizability).
The number of λ∗’s increases further with increasing n.
Table I compiles λ∗ for Rb and Na atoms. In addition to the
l = 0 states, Table I lists λ∗ for the l = 1 and l = 2 states (all
m = 0).

All these λ∗’s are in the CO2 and the frequency-doubled
CO2 laser bands. This provides the advantage of individual

TABLE I. Magic wavelengths (nm) for Rydberg states of Na and
Rb atoms, l = 0,1,2 and m = 0.

n = 100 n = 120

s p d s p d

1961 2798 2734 3894Na 4655 3762 6766 5532

2022 3016 2750 3942Rb 4421 3401 6525 5301
n = 160 n = 180

s p d s p d

2631 2820 3269 3520
5550 3356 3312 6923 4305 4231Na 6791 4762 6792 8695 6006 8567

12 134 9961 15 386 12 631

2735 2927 3317 3557
5755 3132 3120 6989 4124 4095Rb 6363 4714 6743 8358 5934 8490

11 836 9740 15 059 12 402
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lattice-site addressing [30]. These wavelengths are far from
any resonances, which reduces the photon-scattering rate.

In a trap red detuned from the Rb 5s-6p resonance but
blue detuned from the 5s-5p resonance, the ground-state
polarizability is negative and can be matched to the free-
electron polarizability. This allows for a λ∗ ≈ 432 nm [10,16].
However, this magic wavelength. being very close to the
5s-6p resonance, can lead to enhanced photon scattering
and heating. Even then, as the landscape averaging reduces
the free-electron polarizability employed in Ref. [16], the
feasibility of working at that lattice wavelength needs to be
revised. Our calculations show (see Fig. 2) that, for n = 100
at λ∗ ≈ 432 nm, αlsc

r (ω∗)/αe(ω∗) ≈ 3 × 10−3, a substantial
suppression factor. This reduces the trapping depth, and to
make up for the suppression, the laser intensity would need to
be increased by a factor of 360.

In quantum gate protocols, such as the controlled-NOT gate,
the conditional logic requires driving a π -pulse transition
between one of the qubit (ground) states and a Ry state.
Although both the qubit and the Ry states see the same
trapping potentials in magic lattices, the differential energy
shift between these states does not vanish because of the
uniform offset term [Eq. (5)]. Drifts in the lattice laser intensity
introduce an error �ω in the Rabi frequency 
0 of the GS-Ry
transition: 
 = √


2
0 + �ω2. This error in the actual Rabi

frequency 
 leads to the fractional error in GS-Ry rotation
angle: �φ

π
∼ (�ω/
0)2/2. For Rb, we estimate this error to be

�φ

π
= 25( δI

I
)2( 1 MHz


0
)2( U

1 mK )2( λ
1000 nm )4( 350 a.u.

αg
)2, where δI/I

is the fractional intensity fluctuation and U is the trap depth.

For example, when δI/I = 10−4 for a 0.16-mK-deep trap,

0/2π = 1 MHz, and 1000-nm lasers, �φ/π = 6.5 × 10−9.
For CO2 wavelengths, the errors are below 10−4, which is
considered to be tolerable [31].

Finally, although we focused on the magic trapping on the
Ry-GS transition, simultaneous magic trapping on the qubit
transition can also be carried out. For example, techniques
employing additional compensating cw traveling laser waves
[5] are fully compatible with our proposal. Indeed, since the
intensity profile of a traveling wave is uniform in space, it does
not affect the spatially varying part of the optical potentials.

We have demonstrated that, although nominally, the Ry-
state ac polarizability is essentially that of a free electron and
always is negative, the laser intensity landscape can profoundly
affect the effective landscape-averaged polarizability and can
lead to positive values of polarizability. Landscape averaging
depends on the relative size of the Ry orbit and the lattice
constant in a nonmonotonic way. A Ry atom can be attracted
to intensity maxima. This opens up the possibility for magic
trapping of Ry atoms in infrared lattices. The separation
between adjacent atoms at these IR wavelengths is comparable
to a Ry blockade radius of a few microns, which provides an
additional convenience for Ry gate experiments utilizing the
dipole blockade mechanism.
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