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We evaluate the electric-dipole and electric-quadrupole static and dynamic polarizabilities for the 6s2 1S0,
6s6p 3P o

0 , and 6s6p 3P o
1 states and estimate their uncertainties. A first-principles relativistic method is developed

for an accurate calculation of the van der Waals coefficients of dimers involving excited-state atoms with strong
decay channel to the ground state. This method is used for evaluation of the long-range interaction coefficients
of particular experimental interest, including the C6 coefficients for the Yb-Yb 1S0 + 3P o

0,1 and 3P o
0 + 3P o

0 dimers
and C8 coefficients for the 1S0 + 1S0 and 1S0 + 3P o

1 dimers.
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I. INTRODUCTION

The ytterbium atom has two fermionic and five bosonic
isotopes, a 1S0 ground state, a long-lived metastable 6s6p 3P o

0
state, and transitions at convenient wavelengths for laser
cooling and trapping. All this makes Yb a superb candidate for
a variety of applications such as development of optical atomic
clocks [1], study of degenerate quantum gases [2], quantum
information processing [3], and studies of fundamental sym-
metries [4]. The best limit to date on the value of the electron
electric-dipole moment (EDM) which constrains extensions of
the standard model of electroweak interactions was obtained
using the YbF molecule [5]. YbRb and YbCs molecules have
also been proposed for searches for the electron EDM [6] since
they can be cooled to very low temperatures and trapped in
optical dipole traps, leading to very long coherence times in
comparison to molecular beam EDM experiments.

Yb is of particular interest for studying quantum gas
mixtures [2,7–15]. Significant progress has been achieved in
studying the properties of Yb-Yb photoassociation spectra
at ultralow temperatures [7]. Photoassociation spectroscopy
has been performed on bosons [2,8] and fermions [9]. The
use of optical Feshbach resonances for control of entangling
interactions between nuclear spins of 171Yb atoms for quantum
information processing applications has been proposed in
Ref. [16]. A p-wave optical Feshbach resonance using purely
long-range molecular states of a fermionic isotope of ytterbium
171Yb was demonstrated in Ref. [11]. Recent work [17]
theorizes that the case of 174Yb may have sufficiently small
direct background interaction between the atoms to support
two bound states that represent attractively and repulsively
bound dimers occurring simultaneously.

The excited molecular states asymptotically connected to
the 1S0 + 3P o

1 separated Yb atom limit were investigated
by Takasu et al. in Ref. [12]. They reported the successful
production of a subradiant 1g state of a two-atom Yb system
in a three-dimensional optical lattice. The properties of the
long-range potential were studied and the van der Waals
coefficients C3, C6, and C8 were predicted. However, fit
of the C6 and C8 coefficients for the 1g state was rather
uncertain, with strong correlation between the C6 and C8 fit
parameters [18].

Knowledge of the C6 and C8 long-range interaction
coefficients in Yb-Yb dimers is critical to understanding the
physics of dilute gas mixtures. Recently, we evaluated the
C6 coefficient for the Yb-Yb 1S0 + 1S0 dimer and found it
to be C6 = 1929(39) [19], in excellent agreement with the
experimental result C6 = 1932(35) [10]. However, the same
method can not be directly applied to the calculation of the van
der Waals coefficients with Yb-Yb 1S0 + 3P o

1 dimer owing to
the presence of the 3P o

1 → 1S0 decay channel.
In this work, we develop the relativistic methodology for an

accurate calculation of the van der Waals coefficients of dimers
involving excited-state atoms with a strong decay channel
to the ground state and evaluate C6 and C8 coefficients of
particular experimental interest. The nonrelativistic formalism
has been described in Refs. [20–22]. We carefully study the
uncertainties of all quantities calculated in this work so the
present values can be reliably used to analyze existing mea-
surements and to facilitate planning of the future experimental
studies. The methodology developed in this work can be used
for evaluation of van der Waals coefficients in a variety of
systems.

II. GENERAL FORMALISM

We investigate the molecular potentials asymptotically
connecting to the |A〉 + |B〉 atomic states. The wave function
of such a system constructed from these states is

|MA,MB ; �〉 = |A〉I |B〉II, (1)

where the index I (II) describes the wave function located on
the center I (II) and � = MA + MB . Here, the MA(B) is the
projection of the appropriate total atomic angular momentum
JA(B) on the internuclear axis. We assume that � is a good
quantum number for all calculations in this work [Hund’s case
(c)].

The molecular wave functions can be obtained by diago-
nalizing the molecular Hamiltonian

Ĥ = ĤA + ĤB + V̂ (R) (2)

in the model space. Here, ĤA and ĤB represent the Hamil-
tonians of the two noninteracting atoms and V̂ (R) is the
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residual electrostatic potential defined as the full Coulomb
interaction energy in the dimer excluding interactions of the
atomic electrons with their parent nuclei.

Unless stated otherwise, throughout this paper we use
atomic units (a.u.); the numerical values of the elementary
charge |e|, the reduced Planck constant � = h/2π , and the
electron mass me are set equal to 1. The atomic unit for polar-
izability can be converted to SI units via α/h [Hz/(V/m)2] =
2.48832 × 10−8α (a.u.), where the conversion coefficient is
4πε0a

3
0/h, a0 is the Bohr radius, and ε0 is the dielectric

constant.
The potential V (R) may be expressed as an expansion in

the multipole interactions:

V (R) =
∞∑

l,L=0

VlL/Rl+L+1 ,

where VlL are given by [23]

VlL(R) =
ls∑

μ=−ls

(−1)L(l + L)!

{(l − μ)! (l + μ)! (L − μ)! (L + μ)!}1/2

× (
T (l)

μ

)
I

(
T

(L)
−μ

)
II. (3)

Here, ls = min(l,L) and the multipole spherical tensors are

T (K)
μ = −

∑
i

rK
i C(K)

μ (r̂i) , (4)

where the summation is over atomic electrons, ri is the position
vector of electron i, and C(L)

μ (r̂i) are the reduced spherical
harmonics [24].

We now restrict our consideration to the dipole-dipole
and dipole-quadrupole interactions. Introducing designations
dμ ≡ T (1)

μ , Qμ ≡ T (2)
μ , Vdd ≡ V11/R

3, and Vdq ≡ V12/R
4, we

obtain from Eq. (3)

Vdd (R) = − 1

R3

1∑
μ=−1

w(1)
μ (dμ)I(d−μ)II,

(5)

Vdq(R) = 1

R4

1∑
μ=−1

w(2)
μ [(dμ)I(Q−μ)II − (Qμ)I(d−μ)II],

where the dipole and quadrupole weights are

w(1)
μ ≡ 1 + δμ0,

(6)

w(2)
μ ≡ 6√

(1 − μ)! (1 + μ)! (2 − μ)! (2 + μ)!
.

Numerically, w
(2)
−1 = w

(2)
+1 = √

3 and w
(2)
0 = 3.

The energy E ≡ EA + EB , where EA and EB are the atomic
energies of the |A〉 and |B〉 states, is obtained from

(ĤA + ĤB)|MA,MB ; �〉 = E |MA,MB ; �〉. (7)

The molecular wave function �
g/u

� can be formed as a linear
combination of the wave functions given by Eq. (1). �g/u

� poses
a definite gerade or ungerade symmetry and definite quantum
number �. It can be represented by

�
p

� =
{

1√
2
(|A〉I |B〉II + (−1)p|B〉I|A〉II), A �= B

|A〉I |A〉II, A = B
(8)

where we set p = 0 for ungerade symmetry and p = 1 for
gerade symmetry. We have taken into account that the states A

and B that are of interest to this work are the opposite parity
states of Yb atom (when A �= B).

Applying the formalism of Rayleigh-Schrödinger perturba-
tion theory in the second order [25] and keeping the terms up
to 1/R8 in the expansion of V (R), we obtain the dispersion
potential in two-atom basis:

U (R) ≡ 〈
�

p

�

∣∣V (R)
∣∣�p

�

〉
≈ 〈

�
p

�

∣∣V̂dd

∣∣�p

�

〉 + ∑
�i �=�

p

�

[〈
�

p

�

∣∣V̂dd |�i〉〈�i |V̂dd

∣∣�p

�

〉
E − Ei

+
〈
�

p

�

∣∣V̂dq |�i〉〈�i |V̂dq

∣∣�p

�

〉
E − Ei

]
. (9)

The intermediate molecular state |�i〉 with unperturbed energy
Ei runs over a complete set of two-atom states, excluding the
model-space states, Eq. (1). The dispersion potential can be
approximated as

U (R) ≈ −C3

R3
− C6

R6
− C8

R8
. (10)

A. First-order corrections

The first-order correction, which is determined by the first
term on the right-hand side of Eq. (9), is associated with the C3

coefficient in Eq. (10). For the states considered in this work,
this coefficient is nonzero only for the molecular potential
asymptotically connecting to the 1S0 + 3P o

1 atomic states. It
depends entirely on the reduced matrix element (ME) of the
electric-dipole operator |〈3P o

1 ||d||1S0〉| and is given by a simple
formula

C3(�p) = (−1)p+�(1 + δ�,0)

∣∣〈3P o
1

∣∣∣∣d||1S0〉|2
3

. (11)

Specifically,

C3(0g/u) = ∓ 2

∣∣〈3P o
1

∣∣∣∣d||1S0〉|2
3

,

(12)

C3(1g/u) = ±
∣∣〈3P o

1

∣∣∣∣d||1S0〉|2
3

,

where the upper (lower) sign corresponds to gerade (ungerade)
symmetry.

B. Second-order corrections

The second-order corrections, associated with the C6 and
C8 coefficients, are given by the second and third terms on the
right-hand side of Eq. (9):

−C6(�p)

R6
=

∑
�i �=��p

〈��p
|V̂dd |�i〉〈�i |V̂dd |��p

〉
E − Ei

,

−C8(�p)

R8
=

∑
�i �=��p

〈��p
|V̂dq |�i〉〈�i |V̂dq |��p

〉
E − Ei

,
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where E = EA + EB and the complete set of doubled atomic
states satisfies the condition∑

�i

|�i〉〈�i | = 1.

After angular reduction, the C6 coefficient can be expressed as

C6(�) =
JA+1∑

Jα=|JA−1|

JB+1∑
Jβ=|JB−1|

AJαJβ
(�) XJαJβ

, (13)

where

AJαJβ
(�) =

∑
μMαMβ

[
w(1)

μ

(
JA 1 Jα

−MA μ Mα

)

×
(

JB 1 Jβ

−MB −μ Mβ

)]2

,

XJαJβ
=

∑
α,β �=A,B

|〈A||d||α〉|2 |〈B||d||β〉|2
Eα − EA + Eβ − EB

(14)

with fixed Jα and Jβ .
If A and B are the spherically symmetric atomic states

and there are no downward transitions from either of them,
the C6 and C8 coefficients for the A + B dimers are given by
well-known formulas (see, e.g., [26])

CAB
6 = CAB(1,1),

(15)
CAB

8 = CAB(1,2) + CAB(2,1),

where the coefficients CAB (l,L) (l,L = 1,2) are quadratures of
electric-dipole α1(iω) and electric-quadrupole α2(iω) dynamic
polarizabilities at an imaginary frequency:

CAB(1,1) = 3

π

∫ ∞

0
αA

1 (iω) αB
1 (iω) dω,

CAB(1,2) = 15

2π

∫ ∞

0
αA

1 (iω) αB
2 (iω) dω, (16)

CAB(2,1) = 15

2π

∫ ∞

0
αA

2 (iω) αB
1 (iω) dω.

For the Yb-Yb 1S0 + 3P o
1 dimer considered in this work,

the expressions for C6 and C8 are more complicated due to
the angular dependence, the 3P o

1 → 1S0 decay channel, and
nonvanishing quadrupole moment of the 3P o

1 state. After some
transformations, we arrive at the following expression for the
C6 coefficient in the 1S0 + 3P o

1 case:

C6(�p) =
2∑

J=0

AJ (�)XJ , (17)

where the angular dependence AJ (�) is represented by

AJ (�) = 1

3

1∑
μ=−1

{
w(1)

μ

(
1 1 J

−� −μ � + μ

)}2

(18)

with the dipole weights w(1)
μ given by Eq. (6) and � = 0,1.

It is worth noting that AJ (�) (and, consequently, the C6

coefficients) do not depend on gerade or ungerade symmetry.
The quantities XJ for the 1S0 + 3P o

1 dimer are given by

XJ = 27

2π

∫ ∞

0
αA

1 (iω) αB
1J (iω) dω + δX0 δJ,0, (19)

where A ≡ 1S0 and B ≡ 3P o
1 and δX0 is defined below. The

possible values of the total angular momentum J are 0, 1, and
2; αA

1 (iω) is the electric-dipole dynamic polarizability of the
1S0 state at the imaginary argument.

The quantity α

KJ (iω) is a part of the scalar electric-dipole

(K = 1) or electric-quadrupole (K = 2) dynamic polarizabil-
ity of the state 
, in which the sum over the intermediate states
|n〉 is restricted to the states with fixed total angular momentum
Jn = J :

α

KJ (iω) ≡ 2

(2K + 1)(2J
 + 1)

×
∑
γn

(En − E
)|〈γn,Jn = J ||T (K)||γ
,J
〉|2
(En − E
)2 + ω2

.

(20)

Here, γn stands for all quantum numbers of the intermediate
states except Jn.

The correction δX0 to the X0 term in Eq. (19) is due to a
downward 3P o

1 → 1S0 transition and is given by the following
expression:

δX0 = 2
∣∣〈3P o

1

∣∣∣∣d||1S0〉|2
∑

n�= 3P o
1

(
En − E1S0

) |〈n||d||1S0〉|2(
En − E1S0

)2 − ω2
0

+
∣∣〈3P o

1

∣∣∣∣d∣∣|1S0〉|4
2ω0

, (21)

where ω0 ≡ E 3P o
1

− E 1S0 . The expression for the C8(1S0 +
3P o

1 ) coefficient is substantially more complicated, so it is
discussed in the Appendix.

III. METHOD OF CALCULATION

All calculations were carried out by two methods, which
allows us to estimate the accuracy of the final values. The first
method combines configuration interaction (CI) with many-
body perturbation theory (MBPT) [27]. In the second method,
which is more accurate, CI is combined with the coupled-
cluster all-order approach (CI+all-order) that treats both core
and valence correlation to all orders [28–30].

In both cases, we start from a solution of the Dirac-Fock
(DF) equations for the appropriate states of the individual
atoms,

Ĥ0 ψc = εc ψc,

where H0 is the relativistic DF Hamiltonian [27,29] and ψc

and εc are single-electron wave functions and energies. The
calculation was performed in the VN−2 approximation, i.e.,
the self-consistent procedure was done for the [1s2, . . . ,4f 14]
closed core. The B-spline basis set, consisting of N = 35
orbitals for each of partial wave with l � 5, was formed in a
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spherical cavity with radius 60 a.u. The CI space is effectively
complete. It includes the following orbitals: 6 − 20s, 6 − 20p,
5 − 19d, 5 − 18f , and 5 − 11g.

The wave functions and the low-lying energy levels are
determined by solving the multiparticle relativistic equation
for two valence electrons [31]

Heff(En)
n = En
n. (22)

The effective Hamiltonian is defined as

Heff(E) = HFC + �(E), (23)

where HFC is the Hamiltonian in the frozen-core approxima-
tion. The energy-dependent operator �(E) which takes into ac-
count virtual core excitations is constructed using the second-
order perturbation theory in the CI+MBPT method [27]
and using linearized coupled-cluster single-double method in
the CI+all-order approach [29]. �(E) = 0 in the pure CI
approach. Construction of the effective Hamiltonian in the
CI+MBPT and CI+all-order approximations is described in
detail in Refs. [27,29]. The contribution of the Breit interaction
is negligible at the present level of accuracy and was omitted.

The dynamic polarizability of the 2K -pole operator T (K)

at imaginary argument is calculated as the sum of three
contributions: valence, ionic core, and vc. The vc term
subtracts out the ionic core terms which are forbidden by the
Pauli principle. Then,

αK (iω) = αv
K (iω) + αc

K (iω), (24)

where both the core and vc parts are included in αc
K (iω).

A. Valence contribution

The valence part of the dynamic polarizability αv
K (iω) of an

atomic state |
〉 is determined by solving the inhomogeneous
equation in the valence space. If we introduce the wave
function of intermediate states |δ
〉 as

|δ
〉 ≡ Re

{
1

Heff − E
 + iω

∑
i

|
i〉〈
i |T (K)
0 |
〉

}

= Re

{
1

Heff − E
 + iω
T

(K)
0 |
〉

}
, (25)

where “Re” means the real part, then αv(iω) is given by

αv(iω) = 2 〈
|T (K)
0 |δ
〉. (26)

Here, T
(K)

0 is the zeroth component of the T (K) tensor. We
include random-phase approximation (RPA) corrections to the
2K -pole operator T

(K)
0 . Equations (25) and (26) can also be

used to find αv
KJ , i.e., the part of the valence polarizability,

where summation goes over only the intermediate states with
fixed total angular momentum J . We refer the reader to
Ref. [32] for further details of this approach.

B. Core contribution

The core and vc contributions to multipole polarizabilities
are evaluated in the single-electron relativistic RPA approx-
imation. The small αvc term is calculated by adding vc

contributions from the individual electrons, i.e., αvc(6s2) =
2 αvc(6s) and αvc(6s6p) = αvc(6s) + αvc(6p).

A special consideration is required when we need to
find the core contribution to α


KJ (iω) of a state 
. If we
disregard possible excitations of the core electrons to the
occupied valence shells, the valence and core subsystems
can be considered as independent. Then, the total angular
momenta J
 and Jn of the states 
 and 
n, respectively,
can be represented as the sum of the valence and core parts
J = Jv + Jc. In our consideration, the core of the 
 state
consists of the closed shells, and J c


 = 0. If we assume that
the electrons are excited from the core, while the valence part
of the wave function remains the same, we can express the
reduced matrix element of the operator T (K) as

〈J
||T (K)||Jn〉 = 〈
J c


 = 0,J v

,J


∣∣|T (K)|∣∣J c
n = K,J v


,Jn

〉
.

(27)

If T (K) acts only on the core part of the system, we arrive at
(see, e.g., [24])〈

J c

 = 0,J v


,J


∣∣|T (K)|∣∣J c
n = K,J v


,Jn

〉
=

√
2Jn + 1

2K + 1

〈
J c


 = 0
∣∣|T (K)|∣∣J c

n = K
〉
. (28)

Then, using Eq. (20), we can write the core contribution to
αKJ (iω) of the 
 state as

αc
KJ (iω) = 2 (2J + 1)

(2K + 1)2 (2J
 + 1)

×
∑
γ c

n

(En − E
)
∣∣〈J c


 = 0
∣∣|T (K)|∣∣J c

n = K
〉∣∣2

(En − E
)2 + ω2
.

(29)

Taking into account that the core polarizability αc
K (iω) of the

operator T (K) in a single-electron approximation can be written
as

αc
K (iω) = 2

2K + 1

∑
a,n

εn − εa

(εn − εa)2 + ω2
|〈n||T (K)||a〉|2, (30)

where |a〉 and |n〉 are the single-electron core and virtual states,
we arrive at

αc
KJ (iω) = 2J + 1

(2K + 1)(2J
 + 1)
αc

K (iω). (31)

Finally, αKJ (iω) of the 
 state can be approximated as

αKJ (iω) = αv
KJ (iω) + 2J + 1

(2K + 1)(2J
 + 1)
αc

K (iω), (32)

where possible values of J are from min(0,|J
 − K|) to
J
 + K .

IV. RESULTS AND DISCUSSION

A. Energy levels

We start from the calculation of the low-lying energy levels
of atomic Yb. The calculations were carried out using CI,
CI+MBPT, and CI+all-order methods. The results are listed
in Table I (see also the Supplemental Material to Ref. [19])
in columns labeled “CI,” “CI+MBPT,” and “CI+All.” Two-
electron binding energies are given in the first row, energies in
other rows are counted from the ground state. Corresponding
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TABLE I. Theoretical and experimental [33] energy levels (in cm−1). Two-electron binding energies are given in the first row, energies
in other rows are counted from the ground state. Results of the CI, CI+MBPT, and CI+all-order calculations are given in columns labeled
“CI,” “CI+MBPT,” and “CI+All.” Corresponding relative differences of these three calculations with the experiment are given in cm−1 and in
percentages.

Differences (cm−1) Differences (%)

State Expt. CI CI+MBPT CI+All CI CI+MBPT CI+all CI CI+MBPT CI+All

6s2 1
S0 148650 137648 150532 149751 −11003 1882 1101 −7.4 1.3 0.7

5d6s 3D1 24489 25505 25301 25108 1016 812 619 4.1 3.3 2.5
5d6s 3D2 24752 25522 25587 25368 770 835 616 3.1 3.4 2.5
5d6s 3D3 25271 25597 26172 25891 326 901 620 1.3 3.6 2.5
5d6s 1D2 27678 25944 28842 28353 −1734 1164 676 −6.3 4.2 2.4
6s7s 3S1 32695 29631 33170 33092 −3064 475 397 −9.4 1.5 1.2
6s7s 1S0 34351 31346 34848 34755 −3005 497 404 −8.7 1.4 1.2
6s6p 3P o

0 17288 14032 18258 17760 −3256 969 472 −19 5.6 2.7
6s6p 3P o

1 17992 14675 18949 18450 −3317 957 458 −18 5.3 2.5
6s6p 3P o

2 19710 16137 20698 20251 −3574 987 541 −18 5.0 2.7
6s6p 1P o

1 25068 23888 26461 25967 −1181 1393 899 −4.7 5.6 3.6
6s7p 3P o

0 38091 34649 38672 38504 −3441 581 413 −9.0 1.5 1.1
6s7p 3P o

1 38174 34736 38745 38572 −3438 571 398 −9.0 1.5 1.0
6s7p 3P o

2 38552 35045 39127 38962 −3507 575 410 −9.1 1.5 1.1
6s7p 1P o

1 40564 35697 39534 39311 −4867 −1030 −253 −12 −2.5 −3.1

relative differences of these three calculations with experiment
are given in cm−1 and in percentages. The even- and odd-parity
levels are schematically presented in Fig. 1.

Table I illustrates that the difference between the theory and
the experiment is as large as 19% for the odd-parity states at
the CI stage. When we include the core-core and core-valence
correlations in the second order of the perturbation theory
(CI+MBPT method), the accuracy significantly improves.
Further improvement is achieved when we use the CI+all-
order method including correlations in all orders of the MBPT.

B. Polarizabilities

In Table II, we give a breakdown of the main contributions
from the intermediate states to the static electric-dipole and
electric-quadrupole polarizabilities of the 6s2 1S0, 6s6p 3P o

0 ,
and 6s6p 3P o

1 states in the CI+all-order approximation. For
the 3P o

1 state, the contributions to the scalar parts of the
polarizabilities are presented. While we do not explicitly use

FIG. 1. (Color online) Low-lying energy levels of Yb. Other
states of the 4f 135d6s2 configuration are not shown.

the sum-over-states to calculate the polarizabilities, we can
separately compute contributions of individual intermediate
states. The row labeled “Other” lumps contributions of all
other valence states not explicitly listed in the table. The
row labeled “Core+vc” gives the contributions from the core
and vc terms and the row labeled “Total” is the final value
obtained as the sum of all contributions. The theoretical and
experimental transition energies are presented in columns
�Etheor and �Eexpt (in cm−1). We used the theoretical energies
when calculating the contributions of the individual terms
to the polarizabilities. These contributions as well as the
total values of the polarizabilities are given in the column
labeled “α.”

The role of different contributions to the 6s6p 3P o
0 polar-

izability was analyzed in Ref. [19] (see the Supplemental
Material). We compare the 3P o

0 case with the contributions
to the scalar part of the 3P o

1 polarizability given in Table II. We
find that the main contributions to the 6s6p 3P o

0 and 6s6p 3P o
1

polarizabilities are similar in every respect. In particular, the
5d6s 3DJ states contribute ∼57% to both polarizabilities. The
contributions of the 6s6d 3DJ states are at the level of 7%–10%.
The higher-excited states not explicitly listed in the table,
labeled as “Other,” contribute ∼21% in both cases.

To the best of our knowledge, there are no experimental
data for the electric-quadrupole polarizabilities listed in the
table or any transitions that give dominant contributions to α2.
For instance, the main contribution (76%) to α2(1S0) comes
from the 5d6s 1D2 state. Any accurate experimental data for
the 5d6s 1D2 state (lifetime, oscillator strengths, etc.) would
provide an important benchmark relevant to the ground-state
quadrupole polarizability.

We also give the breakdown of the 6s6p 3P o
0 and the

scalar part of 6s6p 3P o
1 electric-quadrupole polarizabilities.

The main contribution (80%) comes from the 6s6p 3P o
2 state

in both cases. We note that the remainder contribution (listed in
rows “Other”) is significant for all polarizabilities considered
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TABLE II. A breakdown of the contributions to the 6s2 1
S0,

6s6p 3P o
0 , and 6s6p 3P o

1 electric-dipole α1 and electric-quadrupole
α2 static polarizabilities in the CI+all-order approximation. For
the 3P o

1 state, the scalar polarizabilities are given. The row labeled
“Other” gives the contribution of all other valence states not
explicitly listed in the table. The row labeled “Core+vc” gives
the contributions from the core and vc terms. The row labeled
“Total” lists the final values obtained as the sum of all contri-
butions. |〈n||T (K)||m〉| are the reduced matrix elements; T (1) = d

and T (2) = Q stand for the electric-dipole and electric-quadrupole
operators, respectively. The theoretical and experimental transition
energies are presented in columns �Etheor and �Eexpt (in cm−1).
The contributions to the polarizabilities are given in the column
labeled “α.”

Polariz. Contrib. |〈n||T (K)||m〉| �Etheor �Eexpt α

α1(3P o
0 ) 5d6s 3D1 2.89 7346 7201 166

6s7s 3S1 1.95 15332 15406 36
6s6d 3D1 1.84 22490 22520 22
Other 63
Core + vc 6
Total 293

α1s(3P o
1 ) 6s2 1

S0 0.571 −18450 −17992 −1
5d6s 3D1 2.51 6656 6497 46
5d6s 3D2 4.35 6916 6760 133
5d6s 1D2 0.453 9899 9686 1
6s7s 3S1 3.46 14642 14703 40
6s7s 1S0 0.243 16305 16359 0.2
6s6d 3D1 1.62 21800 21817 6
6s6d 3D2 2.78 21831 21846 17
6s6d 1D2 0.614 22066 22070 1
Other 66
Core + vc 6
Total 315

α2(1S0) 5d6s 3D2 3.00 25366 24752 31
5d6s 1D2 25.00 28349 27678 1936
6s6d 3D2 3.77 40281 39838 31
6s6d 1D2 8.06 40516 40062 141
Other 407
Core + vc 14
Total 2559

α2(3P o
0 ) 6s6p 3P o

2 21.60 2490 2422 16449
6s7p 3P o

2 10.14 20202 21263 447
Other 3691
Core + vc 14
Total 20602

α2s(3P o
1 ) 6s6p 3P o

2 32.69 1800 1718 17372
6s6p 1P o

1 5.62 7517 7076 123
6s7p 3P o

1 9.35 20122 20099 127
6s7p 3P o

2 16.30 20512 20560 379
6s7p 1P o

1 4.58 20861 22572 29
Other 3973
Core + vc 14
Total 22017

here. These contributions are at the level of 15%–18%. The
uncertainties of the polarizability values are discussed later in
Sec. V.

TABLE III. The values of the D ≡ |〈6s6p 3P o
1 ||d||6s2 1S0〉| matrix

element (in a.u.) and C3 coefficients in the CI+MBPT and CI+all-
order approximations.

CI+MBPT CI+all-order Experiment

D 0.581 0.572 0.549(4)a

0.5407(15)b

C3(0u) 0.225 0.218 0.1949(11)b

C3(0g) −0.225 −0.218
C3(1u) −0.113 −0.109
C3(1g) 0.113 0.109 0.09685c

aReference [34]. The experimental number was obtained from the
weighted 3P o

1 lifetime τ (3P o
1 ) = 845(12) ns.

bReference [7] (this error is purely statistical).
cReference [12].

C. C3 coefficients

The values of the C3 coefficients obtained in the CI+MBPT
and CI+all-order approximations for the 1S0 + 3P o

1 dimer are
given in Table III. We calculated the |〈6s6p 3P o

1 ||d||6s2 1S0〉|
matrix element (ME) and then found C3 coefficients using
Eq. (12). The C3(0g) and C3(1u) have the same numerical
values as C3(0u) and C3(1g), but the opposite sign. Our CI+all-
order value for this ME differs from the experimental results by
4%–5%. It is not unexpected because the 1S0 − 3P o

1 transition
is an intercombination transition and due to cancellation of
different contributions its amplitude is relatively small. It may
be also affected by the mixing with the core-excited states that
are outside of our CI space as is discussed in detail in Ref. [19].
As a result, the accuracy of calculation of such MEs is lower.
Using Eq. (12), we can estimate the accuracy of C3 coefficients
at the level of 8%–10%.

D. C6 and C8 coefficients

To find the van der Waals coefficients for the 1S0 + 3P o
0

and 3P o
0 + 3P o

0 dimers, we computed the dynamic electric-
dipole and electric-quadrupole polarizabilities of the 1S0 and
3P o

0 states at imaginary frequency and then used Eqs. (15)
and (16). In practice, we computed the CAB

6 coefficients by
approximating the integral (17) by Gaussian quadrature of the
integrand computed on the finite grid of discrete imaginary
frequencies [35]. The C6 coefficient for the 1S0 + 1S0 dimer
was obtained in Ref. [19].

The calculation of the C6 and C8 coefficients for the 1S0 +
3P o

1 dimer was carried out according to the expressions given
by Eqs. (17)–(19) and in the Appendix. A breakdown of the
contributions to the C6(�) coefficient for Yb-Yb (1S0 + 3P o

1 )
dimer is given in Table IV. We list the quantities XJ and
coefficients AJ given by Eqs. (18) and (19) for allowed J =
0,1,2. The δX0 term is presented separately in the second row
to illustrate the magnitude of this contribution. It is relatively
small, 4% of the total for � = 0 and 1% for � = 1. It is
included in the X0 value given in the table. We note that the
C6(1S0 + 3P o

1 ) coefficient does not depend on u/g symmetry.
The CI+MBPT and CI+all-order values for XJ are given in
columns labeled “MBPT” and “All.” The relative differences
between these values, which give an estimate of the higher-
order contributions, are listed in the column labeled “HO.” We
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TABLE IV. A breakdown of the contributions to the C6(�)
coefficient for Yb-Yb (1S0 + 3P o

1 ) dimer. The expressions for XJ

and AJ are given by Eqs. (18) and (19). The δX0 term is given
separately in the second row; it is included in the J = 0 contribution.
The CI+MBPT and CI+all-order values for XJ are given in columns
labeled “MBPT” and “All.”

XJ AJ C6(�)

J MBPT All HO � = 0 � = 1 � = 0 � = 1

0 1107 1135 2.5% 4/9 1/9 504 126
δ0 248 253 2.0% 4/9 1/9 112 28
1 4564 4480 −1.9% 1/9 5/18 498 1244
2 6752 6702 −0.7% 11/45 19/90 1638 1415
Sum 2753 2814

find that the higher orders contribute with a different sign to
J = 0 and J = 1,2.

A breakdown of the contributions to the C8(�) coefficients
for Yb-Yb 1S0 + 3P o

1 dimer is given in Table V. We list

the quantities X
JαJβ

k and coefficients A
JαJβ

k (the analytical
expressions for them are given in the Appendix). The δX11

1 and
δX20

2 terms are given separately in the first and fifth rows; they
are included in the X11

1 and X20
2 contributions, respectively.

For calculation of δX11
1 we used the values |〈3P o

1 ||Q||3P o
1 〉| =

17.75 a.u. and the static 1S0 polarizability αA
1 (0) = 140.9 a.u.

obtained in the CI+all-order approximation. The coefficients
A11

3 and A22
4 contain (−1)p, therefore, their sign is different for

gerade and ungerade symmetry resulting in slightly different
values for C8(�u) and C8(�g). In Table V, the + (−) sign
corresponds to the ungerade (gerade) symmetry, respectively.
The CI+all-order values are given for X

JαJβ

k and C8; the
relative differences of the CI+all-order and CI+MBPT values
are given in the column labeled “HO” in %.

Our final results for polarizabilities and the van der Waals
C6 and C8 coefficients are summarized in Table VI. The

6s2 1S0, 6s6p 3P o
0 , and 6s6p 3P o

1 electric-dipole α1 and electric-
quadrupole α2 static polarizabilities in the CI+MBPT and
CI+all-order approximations are listed in a.u. For the 3P o

1 state,
the scalar parts of the polarizabilities are presented. The values
of C6(�u/g) and C8(�u/g) coefficients for the A + B dimers in
the CI+MBPT and CI+all-order approximations are listed in
the second part of the table. The (rounded) CI+all-order values
are taken as final. The relative contribution of the higher-order
corrections is estimated as the difference of the CI+all-order
and CI+MBPT results; it is listed in column labeled “HO” in
percent.

V. DETERMINATION OF UNCERTAINTIES

We compare frequency-dependent polarizabilities calcu-
lated in the CI+MBPT and CI+all-order approximations for
all ω used in our finite grid to estimate the uncertainties of the
C6 and C8 coefficients. We find that the difference between
the CI+all-order and CI+MBPT frequency-dependent polar-
izability values is largest for ω = 0 and decreases significantly
with increasing ω. This is reasonable because for large ω the
main contribution to the polarizability comes from its core
part. But, the core parts are the same for both CI+all-order
and CI+MBPT approaches.

Therefore, the fractional uncertainty δCAB(l,L) (l,L =
1,2) may be expressed via fractional uncertainties in the static
multipole polarizabilities of the atoms A and B [39]:

δCAB(l,L) =
√[

δαA
l (0)

]2 + [
δαB

L (0)
]2

. (33)

The absolute uncertainties induced in CAB
6 and CAB

8 (A �= B)
are given by

�CAB
6 = �CAB(1,1),

(34)
�CAB

8 =
√

[�CAB(1,2)]2 + [�CAB(2,1)]2.

TABLE V. A breakdown of the contributions to the C8(�) coefficient for Yb-Yb (1S0 + 3P o
1 ) dimer. The expressions for X

JαJβ

k and A
JαJβ

k

are given in the Appendix. The δX11
1 term (designated as δ11

1 ) is given separately in the first row; it is included in the X11
1 contribution. The

δX20
2 term (designated as δ20

2 ) is given separately in the fifth row; it is included in the X20
2 contribution. The CI+all-order values are given for

X
JαJβ

k and C8; the relative differences of the CI+all-order and CI+MBPT values are given in columns labeled “HO” in %. The + (−) sign
corresponds to the ungerade (gerade) symmetry, respectively.

A
JαJβ

k C8(�)

JαJβ,k X
JαJβ

k HO � = 0 � = 1 � = 0 � = 1

δ11
1 66588 0.5%

11,1 107772 0.0% 3/5 1/5 64663 21554
12,1 392687 −0.6% 1/15 7/15 26179 183254
13,1 249267 −1.1% 43/105 31/105 102081 73593
δ20

2 6510 1.4%
20,2 35061 3.5% 3/5 1/5 21037 7012
21,2 142845 −0.4% 1/5 2/5 28569 57138
22,2 213240 0.7% 9/25 8/25 76766 68237
11,3 1061 −5.6% ± 3/5 ± 1/5 ± 637 ±212
22,4 550 −15% ± 9/25 ± 3/25 ± 198 ± 66
C8(�u) 320130 411067
C8(�g) 318461 410511
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TABLE VI. The 6s2 1S0, 6s6p 3P o
0 , and 6s6p 3P o

1 electric-dipole α1 and electric-quadrupole α2 static polarizabilities in the CI+MBPT and
CI+all-order approximations (in a.u.). For the 3P o

1 state, the scalar parts of the polarizabilities are presented. The values of C6(�u/g) and
C8(�u/g) coefficients for the A + B dimers in the CI+MBPT and CI+all-order approximations are listed in the second part of the table. The
(rounded) CI+all-order values are taken as final.

Level Property CI+MBPT CI+all HO Final Other

6s2 1S0 α1
a 138.3 140.9 1.8% 141(2) 141(6)b

136.4(4.0)c

144.59d

6s6p 3P o
0 α1

a 305.9 293.2 −4.3% 293(10) 302(14)b

6s6p 3P o
1 α1s 323.3 315.3 −2.5% 315(11)

6s2 1S0 α2 2484 2559 2.9% 2560(80)
6s6p 3P o

0 α2 21294 20601 −3.4% 20600(700)
6s6p 3P o

1 α2s 22923 22017 −4.1% 22000(900)
1S0 + 1S0 C6

a 1901 1929 1.5% 1929(39) 1932(35)e

C8 182360 187860 2.9% 1.88(6)×105 1.9(5)×105e

1S0 + 3P o
0 C6 2609 2561 −1.9% 2561(95) 2709(338)b

3P o
0 + 3P o

0 C6 3916 3746 −4.5% 3746(180) 3886(360)b

1S0 + 3P o
1 C6(0u/g) 2649 2640 −0.3% 2640(103) 2410(220)f

C6(1u/g) 2824 2785 −1.4% 2785(109) 2283.6g

C8(0u) 321097 320130 −0.3% 3.20(14)×105

C8(1u) 412779 411067 −0.4% 4.11(18)×105

C8(0g) 319300 318461 −0.3% 3.18(14)×105

C8(1g) 412180 410511 −0.4% 4.11(18)×105

aSafranova et al. [19], theory.
bDzuba and Derevianko [36], theory.
cZhang and Dalgarno [37], based on experiment.
dSahoo and Das [38], theory.
eKitagawa et al. [10], experiment.
fBorkowski et al. [7], experiment; the error includes only uncertainty of the fit.
gTakasu et al. [12], experiment.

The polarizabilities and their absolute uncertainties are
presented in Table VI. The uncertainties of the electric-
dipole 1S0 and 3P o

0 polarizabilities were discussed in detail
in Ref. [19]; the uncertainty of the 3P o

0 polarizability was
determined to be 3.4%. Table I illustrates that the accuracy
of calculation of the 3P o

0 and 3P o
1 energy levels is practically

the same (∼2.5% at the CI+all-order stage). We use the same
method of solving the inhomogeneous equation to determine
both the 3P o

0 and 3P o
1 polarizabilities. The main contributions

to these polarizabilities are also very similar. Based on these
arguments, we assume that the uncertainty of the scalar part
of the 3P o

1 polarizability can be estimated at the level of 3.5%.
Our estimates of the uncertainties of the electric-quadrupole

polarizabilities are based on the differences between the
CI+MBPT and CI+all-order values. Besides that, we take
into account that in all cases the dominant contribution comes
from the low-lying state which energies we reproduce well
(see Table I). Based on the size of the higher-order correction,
we assign the uncertainties 3%–4% to these polarizabilities.
These results, as well as the final (recommended) values of the
polarizabilities, are presented in Table VI.

Using Eqs. (33) and (34), we estimated the fractional
uncertainties of the C6 coefficient for the 1S0 + 3P o

0,1 dimers
at the level of 4%–4.5%. The uncertainty of the C8(1S0 + 1S0)
coefficient is 3.2% and the uncertainties of the C8(1S0 + 3P o

1 )
coefficients are ∼4.5%. The difference of the CI+all-order
and CI+MBPT values (4.5%) is taken as an uncertainty for
the C6 (3P o

0 + 3P o
0 ) coefficient.

VI. CONCLUSION

To conclude, we evaluated the electric-dipole and electric-
quadrupole static and dynamic polarizabilities for the 6s2 1S0,
6s6p 3P o

0 , and 6s6p 3P o
1 states and estimated their uncer-

tainties. The C6 and C8 coefficients are evaluated for the
Yb-Yb dimers. The uncertainties of our calculations of the
van der Waals coefficients do not exceed 5%. Our result C8 =
1.88(6) × 105 for the 1S0 + 1S0 dimer is in excellent agreement
with the experimental value C8 = 1.9(5) × 105 [10]. The
quantities calculated in this work allow future benchmark tests
of molecular theory and experiment. Most of these quantities
are determined for the first time. Methodology developed in
this work can be used to evaluate properties of other dimers
with excited atoms that have a strong decay channel.
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APPENDIX: C8 COEFFICIENTS FOR THE 1S0 + 3P o
1 DIMER

Following the formalism of Sec. II, the C8 coefficient may be expressed as

C8(�p)

R8
=

∑
A,B �=α,β

〈AB|V̂dq |αβ〉〈αβ|V̂dq |AB〉 + (−1)p〈AB|V̂dq |αβ〉〈αβ|V̂dq |BA〉
Eα + Eβ − E ,

which can be further reduced to

C8(�p) =
4∑

k=1

∑
JαJβ

A
JαJβ

k (�p)X
JαJβ

k ,

where

A
JαJβ

1 (�) =
∑

μMαMβ

{
w(2)

μ

(
JA 1 Jα

−MA μ Mα

) (
JB 2 Jβ

−MB −μ Mβ

)}2

, X
JαJβ

1 =
∑
αβ

|〈A||d||α〉|2|〈B||Q||β〉|2
Eα − EA + Eβ − EB

;

A
JαJβ

2 (�) =
∑

μMαMβ

{
w(2)

μ

(
JA 2 Jα

−MA μ Mα

) (
JB 1 Jβ

−MB −μ Mβ

)}2

, X
JαJβ

2 =
∑
αβ

|〈A||Q||α〉|2|〈B||d||β〉|2
Eα − EA + Eβ − EB

;

A
JαJβ

3 (�p) = (−1)p
∑

μλMαMβ

(−1)JA−Jα+JB−Jβ+1w(2)
μ w

(2)
λ

×
(

JA 1 Jα

−MA μ Mα

)(
JA 1 Jβ

−MA λ Mβ

) (
JB 2 Jβ

−MB −μ Mβ

)(
JB 2 Jα

−MB −λ Mα

)
,

X
JαJβ

3 =
∑
αβ

〈A||d||α〉〈α||Q||B〉〈B||Q||β〉〈β||d||A〉
Eα − EA + Eβ − EB

;

A
JαJβ

4 (�p) = (−1)p
∑

μλMαMβ

(−1)JA−Jα+JB−Jβ+1w(2)
μ w

(2)
λ

×
(

JA 2 Jα

−MA μ Mα

)(
JA 2 Jβ

−MA λ Mβ

) (
JB 1 Jβ

−MB −μ Mβ

)(
JB 1 Jα

−MB −λ Mα

)
,

X
JαJβ

4 =
∑
αβ

〈A||Q||α〉〈α||d||B〉〈B||d||β〉〈β||Q||A〉
Eα − EA + Eβ − EB

.

The total angular momenta Jα and Jβ of the intermediate states α and β are fixed in all of the equations above.
We are interested in the case when A ≡ 1S0 and B ≡ 3P o

1 . Then, JA = 0, JB = 1, and � = MB = 0,1. For k = 1, we have

Jα = 1 and Jβ = 1,2,3. The coefficients A
1Jβ

1 (�) are listed in Table V. The quantities X
1Jβ

1 are given by

X
1Jβ

1 = 45

2π

∫ ∞

0
αA

1 (iω) αB
2Jβ

(iω) dω + δX11
1 δJβ ,1,

(A1)

δX11
1 = 3

2

∣∣〈3P o
1

∣∣|Q|∣∣3
P o

1

〉∣∣2
αA

1 (0).

For k = 2, we have Jα = 2 and Jβ = 0,1,2. The coefficients A
2Jβ

2 (�) are listed in Table V. The quantities X
2Jβ

2 are given by

X
2Jβ

2 = 45

2π

∫ ∞

0
αA

2 (iω) αB
1Jβ

(iω) dω + δX20
2 δJβ ,0,

δX20
2 = 2

∣∣〈3P o
1

∣∣|d||1S0〉|2
∑

n

(
En − E 1S0

) |〈n||Q∣∣|1S0〉|2(
En − E 1S0

)2 − ω2
0

, (A2)

where ω0 ≡ E 3P o
1

− E 1S0 . For k = 3, we find that Jα = 1 and Jβ = 1. For all other Jα and Jβ , this expression turns to zero. Then,

A11
3 (�p = 0) = (−1)p 3/5, A11

3 (�p = 1) = (−1)p 1/5. (A3)

X11
3 =

∑
n,k

〈1
S0

∣∣|d|∣∣n 1,3P o
1

〉〈
n 1,3P o

1

∣∣|Q|∣∣3
P o

1

〉 〈3P o
1

∣∣|Q|∣∣k 1,3P o
1

〉〈
k 1,3P o

1

∣∣|d||1S0〉
En − E 1S0 + Ek − E 3P o

1

. (A4)
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For k = 4, we have Jα = 2 and Jβ = 2. Then

A22
4 (�p = 0) = (−1)p

9

25
; A22

4 (�p = 1) = (−1)p
3

25
,

X22
4 =

∑
n,k

〈1S0||Q||n 1,3D2〉〈n 1,3D2||d|∣∣3
P o

1

〉 〈3P o
1

∣∣|d||k 1,3D2〉〈k 1,3D2||Q||1S0〉
En − E 1S0 + Ek − E 3P o

1

. (A5)
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