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Possibility of magic trapping of a three-level system for Rydberg blockade implementation
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The Rydberg blockade mechanism has shown noteworthy promise for scalable quantum computation with
neutral atoms. Both qubit states and gate-mediating Rydberg state belong to the same optically trapped atom.
The trapping fields, while being essential, induce detrimental decoherence. Here we theoretically demonstrate
that this Stark-induced decoherence may be completely removed using powerful concepts of magic optical traps.
We analyze magic trapping of a prototype three-level system: a Rydberg state along with two qubit states:
hyperfine states attached to a J = 1/2 ground state. Our numerical results show that, while such a magic trap
for alkali metals would require prohibitively large magnetic fields, the group IIIB metals such as Al are suitable
candidates.
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I. INTRODUCTION

Multiparticle quantum gates have been successfully im-
plemented in neutral atoms using the Rydberg blockade
mechanism [1–4]. In this method, qubits are encoded in
hyperfine sublevels of the electronic ground state in each
atom. Gate operations utilize interactions between pairs of
neutral atoms with a separation on the order of 10 μm. At this
range, ground-state atoms have negligible interactions, while
Rydberg states interact strongly with each other. Blockade
refers to the inhibition of excitation of a target atom by the
prior excitation of another (control) atom. This can be used to
entangle the qubits and execute CNOT gates, which in principle
forms a universal set of two-qubit gates for arbitrary quantum
computation.

Unfortunately, such a qubit implementation suffers from
decoherence due to the trapping lasers. All three (two qubit
and Rydberg) atomic levels are shifted via the Stark effect,
leading to undesired differential phase accumulation. Even
worse, the shift accumulation is uncontrollable as it depends
on the local laser intensity, which varies as the atom moves in
the trap.

This problem is similar to that encountered in optical lattice
clock experiments. So-called magic traps were proposed as
a powerful solution and have seen widespread use in clock
experiments (see, e.g., reviews [5,6] and also [7,8]). Just as
for neutral atom implementation of qubits, clocks depend on
the transition frequency between two particular atomic energy
levels. With a particular choice of trapping laser wavelength
(and, in some cases, magnetic fields and polarization; see
[5,9]), both levels experience the same shift regardless of laser
intensity, so the perturbation from the trap effectively vanishes.
Figure 1 depicts the level structure.

In the case of the alkalis, qubit transitions can be made Stark
and Zeeman insensitive at a range of trapping wavelengths
using a bias magnetic field tuned to a magic value, as described
in Ref. [10]. The hyperfine structure of Al is also favorable for
magic trapping, discussed in Refs. [9,11], and the formalism
from Ref. [10] for alkalis is also applicable to Al. Thus the
problem of removing decoherence for the qubit levels has
already been solved.

However, excitation to a Rydberg level also causes deco-
herence of the qubit since in general the Rydberg trapping

potential differs from the ground-state potential. This third
level and additional source of decoherence must be addressed.
Previous proposals have considered magic trapping for a
two-level system, including a Rydberg state in alkalis [12]
and in alkaline earths [13,14]. However, such treatments are
not sufficient for the present problem, as the remaining Stark
shifts of the qubit states would cause decoherence. We must
therefore treat all three levels simultaneously. This problem
is more akin to the situation in Ref. [9], which considered
two-level systems in two species sharing the same trap.

Our goal in this paper is to find magic trapping conditions
such that all three levels experience the same optical trapping
potential. We begin by reviewing the Stark effect theory
underlying such magic traps. We then present results of
numerical calculations for Rb, Cs, and Al.

II. THEORY

A. Nonmagnetic states

We begin by summarizing the Stark effect formalism
necessary for Rydberg states. This treatment is similar to
that in Refs. [9,15] and references therein. The ac Stark shift
of an atomic state |nF,MF 〉 with total angular momentum
�F = �J + �I and projection MF can be written as1

δEnFMF
(ω) = −αtot

nFMF
(ω)

(EL

2

)2

, (1)

whereEL and ω are the amplitude and frequency of the trapping
laser field. The prefactor αtot

nFMF
(ω) is the total polarizability

of the state; note that it depends on ω but not on EL. αtot
nFMF

(ω)
may be decomposed using irreducible tensor operators as

αtot
nFMF

(ω) = αS
nF (ω) + (k̂ · B̂)A MF

2F
αa

nF (ω)

+ 1

2
(3|ε̂ · B̂|2 − 1)

3MF
2 − F (F + 1)

F (2F − 1)
αT

nF (ω).

(2)

Here A is the degree of circular polarization (|A| � 1), while
αS

nF , αa
nF , and αT

nF are the irreducible scalar, vector, and tensor

1We use atomic units throughout unless noted otherwise.
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FIG. 1. (Color online) Stark shifts affecting the Rydberg blockade
three-level system (not to scale). Qubit levels |0〉 and |1〉 are
hyperfine levels attached to the electronic ground state, while |R〉 is a
Rydberg state. The unperturbed levels (solid) acquire a shift from the
trapping laser. (a) For an arbitrary trapping laser, each state is shifted
(dashed) by a different amount according to the local laser intensity.
(b) With magic trapping conditions, all levels experience the same
shift (dotted), and differential phase accumulation due to the trap
vanishes.

polarizabilities, respectively. The unit vectors are the laser
wave vector (k̂), laser polarization (ε̂), and bias magnetic field
(B̂). Their relative geometry is shown in Fig. 2. The bias mag-
netic field is a static, externally applied field which defines the
quantization axis. This “quantizing magnetic field” guarantees
that MF remains a “good” quantum number for the ac Stark
effect perturbation formalism, from which Eq. (2) follows.2

For linearly polarized light, ε̂ · B̂ = cos θp, where θp is the
angle between the polarization and quantization unit vectors.
If we consider circularly polarized light, defining ε̂ using Jones
calculus conventions, then |ε̂ · êz|2 = 1

2 sin2 θk , where θk is the
angle between the wave vector and quantization unit vectors.

Equations (1) and (2) determine our task: we must find ω

and either θk or θp such that the Rydberg polarizability αRyd(ω)
and the qubit state polarizabilities αnFMF

(ω) and αnF ′MF ′ (ω)
are all equal. Note that the polarizabilities in Eqs. (1) and
(2) may be the conventional second-order quantities, as in
Ref. [15], or they may be replaced with third-order hyperfine
mediated polarizabilities, denoted β and described in detail
in Ref. [8]. The second-order definition considers only the
interaction with the external electric field, neglecting the
hyperfine interaction. This is sufficient for matching Rydberg
and ground-state polarizabilities, but it cannot be used to find
magic conditions for the qubit levels. As shown in Ref. [8],
if the hyperfine interaction is neglected, the qubit levels are
degenerate and always experience the same shift, so any choice
of ω and θ is trivially magic. Therefore a third-order treatment
including hyperfine and external electric-field interactions is
necessary for the qubit states.

For Rydberg states, the tensor polarizability is highly
suppressed at optical frequencies [12,15], so the total polar-
izability is dominated by the scalar part, which is essentially
equal to that of a free electron, αS

Ryd(ω) = −1/ω2. Our ab initio
numerical calculations confirmed this conclusion; see Sec. III
below for details. Since αS

Ryd has negligible dependence on
geometry (either θk or θp), the magic trap frequency will be

2The energy shifts caused by the Stark effect must be small
compared to the Zeeman splitting of the magnetic sublevels.

FIG. 2. (Color online) Relation of angles to unit vectors in Eq. (2).
(a) For linear polarization, k̂, ε̂, and B̂ are the laser wave vector,
laser polarization, and quantization axis, respectively. θp is the angle
between the polarization and the quantization axis, defined by the
magnetic field. (b) For circular polarization, the relevant angle is θk ,
the angle between the wave vector and the magnetic field. (θp is no
longer well defined as ε̂ is time dependent.)

determined by αS
Ryd(ω) = αtot

nl1/2
(ω), i.e., when the ground- and

Rydberg state polarizabilities are equal.
Equations (1) and (2) also apply for qubit states in Al,

with β in place of α as detailed above. Using Al in a linearly
polarized trap, magic conditions for qubit transitions between
nonmagnetic states will be set entirely by geometry. For the
alkalis, magic trapping is not possible using nonmagnetic
states, so we consider magnetic states below.

B. Magnetic states

Here we review the formalism to find magic conditions
for qubit states with nonzero MF projection. The methods
developed above in Sec. II A are not sufficient to find magic
conditions for the qubit transition in alkalis. As was shown in
Ref. [8], magic conditions do not exist for the nonmagnetic
hyperfine states. This is due to the smallness of αT in
comparison with αS , along with the strict proportionality of
αS

nF ′MF ′ and αS
nFMF

. However, if we move to magnetic substates
(with MF �= 0) we acquire unacceptable Zeeman sensitivity.

A solution to this problem was developed in Ref. [10].
Atoms with a J = 1/2 ground state are held in a circularly
polarized trap to take advantage of vector polarizabilities. By
utilizing multiphoton transitions between magnetic states with
opposite projections (i.e., |nF ′,MF 〉 and |nF,−MF 〉) most of
the first-order Zeeman shift goes away as these states have
opposite electronic g factors.3 The remaining first-order shift
is due only to the much smaller nuclear magnetic moment,
which can be made to cancel the second-order shift with the
application of a static magnetic field. The magic value of the

3Since J = 1/2, there are only two hyperfine states, and F ′ =
F + 1.
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B field is given by

Bm ≈ gIμNMF ′

2|〈nF,MF ′ |μe
z|nF ′,MF ′ 〉|2 ωqubit, (3)

where ωqubit is the energy splitting between the hyperfine
levels. Although this expression for Bm is only accurate to
second order, it agrees well with the exact answer [10].

Having dealt with Zeeman sensitivity, we turn to the Stark
shift due to the trapping lasers. We need the differential
shift between the qubit states to vanish, i.e., both states must
experience the same shift. This condition is satisfied when [10]

(
βs

nF ′ − βs
nF

) + δβT + A cos θkMF ′

[(
1

2F ′ β
a
nF ′ + 1

2F
βa

nF

)

+ gI

μN

μB

(
B

Bm

)
αa

nl1/2

]
= 0. (4)

Here βS , βa , and βT are the third-order hyperfine me-
diated polarizabilities referred to above, while αa

nl1/2
is the

conventional second-order polarizability. Note the distinction
between coupling schemes used in αa

nl1/2
and αa

nF . δβT absorbs
lengthy prefactors. The full form is

δβT = −βT
nF ′

3M2
F − F ′(F ′ + 1)

2F ′(2F ′ − 1)
+ βT

nF

3M2
F − F (F + 1)

2F (2F − 1)
.

(5)

Bm is set by Eq. (3), while B is the actual applied field. Ideally
B = Bm, but as suggested in Ref. [10] this is not always
possible.

Clearly we need the third-order polarizabilities for the two
states to cancel, but the appearance of the last term involving
αa

nl1/2
may be surprising. It arises due to interference between

the Zeeman shift and the vector part of the Stark shift, as these
are both (axial) vector operators; see [10] for a full discussion.
Although μN � μB , αa

nl1/2
	 βT

nF , so this term is of a compa-
rable order of magnitude and must be included in Eq. (4).

Evaluating Eq. (3) with representative values, we find
that Bm is on the order of a few G. This relatively large
magnetic field may adversely impact the blockade interactions.
A detailed treatment of these effects is beyond the scope of
this paper. However, the case of Zeeman degenerate states is
treated in Ref. [16], and a qualitatively similar approach should
suffice to calculate the effect of Bm on the blockade.

III. NUMERICAL EVALUATION

We used the same codes as in Ref. [9] for the ground states in
all atoms considered. To summarize, we use the B-spline tech-
nique to generate a quasicomplete set of orbitals that are solu-
tions to the Dirac-Hartree-Fock equations. To refine these so-
lutions, we find the second-order self-energy operator to build
the so-called Brueckner orbitals. Matrix elements are then
calculated using the relativistic random-phase approximation.

For the Rydberg state calculations, we extended and
modified our B-spline codes; the original codes are described
in detail in Ref. [17]. To generate a complete basis set including
physically accurate Rydberg states, we dramatically increased
the size of the cavity and the number of basis functions. As
an illustration, a typical run to calculate low-lying states uses
∼40 splines in a ∼50aB cavity. For calculations aimed at the

50s state, we obtained accurate results using ∼200 splines
in a ∼8000aB cavity. We also used a logarithmic rather than
an exponential distribution of spline knots. This increased the
accuracy of matrix elements by improving the representation
of wave functions at large R near the cavity wall.

Correlations were included by building the self-energy
operator using a small basis set (∼40 splines in a ∼50aB cavity)
and using this potential to build Brueckner orbitals for a large
set. This is justified since the self-energy operator diminishes
rapidly outside the core, so highly excited states have a negligi-
ble contribution. Neglecting these states decreases calculation
time dramatically. Inclusion of correlations introduced small
but detectable corrections to Rydberg state energies and matrix
elements. Corrections were around the fourth significant figure
for n = 50 states and diminished with increasing n.

IV. RESULTS

We first present results for 87Rb. This isotope has nuclear
spin I = 3/2, and we are interested in transitions between
the |F ′ = 2,MF ′ = 1〉 and |F = 1,MF = −1〉 qubit states
attached to the 5s1/2 electronic ground state. The hyperfine
splitting is 6.83 GHz, and from Eq. (3), Bm ≈ 3.25 G [10].
In Fig. 3 we plot αRyd, αS

5s1/2
, and the ratio B/Bm. To

achieve magic trapping using the scheme above, we require
|B/Bm| � 1 in Eq. (4). If |B/Bm| is slightly greater than 1,
“nearly magic” trapping is possible as considered in Ref. [10].
But in this case, B/Bm diverges near ωm, and the necessary
B to achieve Stark-insensitive trapping is prohibitively large.
The reason for this divergence can be seen from Eq. (4) by
solving for B/Bm:

B

Bm

= − μB

gIμNαa
nl1/2

[(
βs

nF ′ − βs
nF

) + δβT

A cos θkMF ′

+
(

1

2F ′ β
a
nF ′ + 1

2F
βa

nF

)]
. (6)

As B/Bm is inversely proportional to αa
5s1/2

, this ratio diverges
wherever αa

5s1/2
is zero. The situation is qualitatively the same

for 133Cs; our numerical calculations show a similar divergence
near ωm. For the lighter alkalis, there are no doubly magic or
nearly magic points for the qubit transition.

Since it is not possible to build a magic three-level trap
with the alkalis, we need another candidate. Alkaline-earth
atoms and similar divalents are a popular choice for many
cold-atom trapping experiments, but they have J = 0 ground
states (zero electronic angular momentum). They therefore
lack hyperfine structure and are unsuitable for our trapping
scheme. Instead, we turn to 27Al. It has been successfully laser
cooled [18], and as was shown in Ref. [11], magic trapping
of its hyperfine states is aided by comparatively large tensor
polarizabilities. This is because the ground state 3p1/2 is part
of a fine-structure multiplet (3p1/2 and 3p3/2): the presence of
this nearby state leads to terms with small energy denominators
in the perturbation theory expressions for α, but due to angular
selection rules these terms enhance only αT and not αS .

With nuclear spin I = 5/2, we consider the |F ′ = 3,MF ′ =
1〉 and |F = 2,MF = −1〉 qubit states attached to the 3p1/2

electronic ground state. The hyperfine splitting is 1.506 GHz,
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FIG. 3. (Color online) Polarizabilities of the 5s state (dashed),
the Rydberg state (solid), and the ratio B/Bm (lower frame) for the
hyperfine transition |F = 2,MF = 1〉 to |F = 1,MF = −1〉 in 87Rb.
Since αa

5s � αS
5s , the magic ω simply occurs where αRyd = αS

5s1/2

at approximately ω = 0.1062 a.u. (λ = 429 nm). B/Bm is obtained
from Eq. (4). Near the circled magic ω, B/Bm diverges, so magic
trapping is impossible.

and Eq. (3) gives Bm ≈ 4.32 G. We may use either a linearly
or circularly polarized trapping laser. In the case of a linearly
polarized trap, the situation is closely analogous to that in
Ref. [9]. The magic wavelength is set where αRyd = αS

3p1/2
,

near ω = 0.121 a.u. (λ = 377 nm). The enhanced tensor
polarizability all but guarantees that the qubit transition can be
made magic. Numerical calculations show that this does occur
with a magic angle θp ≈ 65◦.

For a circularly polarized trap, no divergence of B/Bm

occurs near the magic frequency ωm as for the alkalis.
However, the magic condition is more complex, as the ground-
state second order αa

3p1/2
is not negligible compared with αS

3p1/2
.

The total second-order polarizability of the ground state is
given by Eq. (2).4 This must equal the Rydberg polarizability,
leading to

αS
F (ω) + A cos θk

MF

2F
αa

F (ω) = α
Ryd
FMF

(ω). (7)

Our choice of ω and θk must simultaneously satisfy Eqs. (4)
and (7). We may solve for MFA cos θk appearing in Eqs. (4)

4αT is identically zero as J = 1/2.

LHS

RHS
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FIG. 4. (Color online) Left-hand side (solid) and right-hand side
(dashed) of Eq. (8). The range for magic trapping of the Rydberg
transition is given by Eq. (7) and lies between the resonance at
ω = 0.1155 a.u. (λ = 394 nm) and the dotted line at ω = 0.121 a.u.
(λ = 377 nm). The magic frequency and magic angle for the qubit
transition are set by the curves’ intersection, just under ω = 0.121 a.u.
This combination of ωmagic and θmagic will allow Stark and Zeeman
insensitive trapping for the three-level system in Al.

and (7) and equate the results, giving

2F ′ ω
−2 + αS

F

αa
F

= βs
F ′ − βs

F + δβT

1
2F ′ β

a
F ′ + 1

2F
βa

F + gI
μN

μB

B
Bm

αa
np1/2

. (8)

We plot the left- and right-hand sides of Eq. (8) in Fig. 4.
Since they intersect in the range allowed by Eq. (7), magic
trapping for this three-level system in Al is possible. While
circularly polarized trapping would be more complex than the
linearly polarized trap presented above, it has the additional
advantage of less Zeeman sensitivity. This is because the magic
B field removes Zeeman effects to second order, while the
linearly polarized trap only removes Zeeman decoherence to
first order in the B field.

V. CONCLUSION

We have presented a method to remove differential Stark
shifts for a three-level atomic system consisting of a Rydberg
state and two hyperfine states attached to the ground electronic
state. Such a system is an essential element of the CNOT gates
utilizing the Rydberg blockade mechanism. Although such a
trap is not possible for the alkalis, our numerical calculations
show that Al may be trapped using this method. Such a trap
could prove useful for removing decoherence from trapping
lasers in implementing the Rydberg blockade mechanism. It
is worth noting that this scheme is possible thanks to the
presence of fine-structure levels near the ground state. Since
the majority of atoms share this structure, as laser cooling
techniques advance, this style of magic trapping could be
adopted for many atomic species.
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