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Proposed search for T -odd, P-even interactions in spectra of chaotic atoms
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Violation of fundamental symmetries in atoms is the subject of intense experimental and theoretical interest.
P-odd, T-even transitions have been observed and are in excellent agreement with electroweak theory. Searches
for permanent electric dipole moments have placed bounds on T-odd, P-odd interactions, constraining proposed
extensions to the standard model of elementary particles. Here we propose a search for T-odd, P-even (TOPE)
interactions in atoms. We consider open-shell atoms, such as rare-earth-metal atoms, which have dense, chaotic
excitation spectra with strong level repulsion. The strength of the level repulsion depends on the underlying
symmetries of the atomic Hamiltonian. TOPE interactions lead to enhanced level repulsion. We demonstrate
how a statistical analysis of many chaotic spectra can determine the strength of level repulsion; in particular, the
variance of the number of levels in an energy range has been shown to be a useful measure. We estimate that,
using frequency comb spectroscopy, a sufficient number of chaotic levels could be measured to match or exceed
the current experimental bounds on TOPE interactions.
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I. BACKGROUND

Electromagnetic interactions are invariant under any com-
bination of the discrete symmetry operations, including spatial
parity (P), time reversal (T), and charge conjugation (C).
Conservation of these symmetries leads to the well-known
selection rules for atomic expectation values and transition
amplitudes. Searching for violation of these selection rules
enables revealing minute nonelectromagnetic corrections to
the atomic Hamiltonian. The first observation of the parity-
forbidden E1 transition in bismuth was an important confir-
mation of the electroweak theory in the semileptonic sector
[1]. Later atomic experiments with cesium confirmed the
low-energy limit of the electroweak theory at the level of
radiative corrections [2–4]. While the parity violation is firmly
established, the T violation is probed in searches for the electric
dipole moments (EDMs) of elementary particles, which violate
both P and T symmetries [5]. The most stringent limits to
date on the electron EDM were derived from experiments
with atomic thallium [6] and with the YbF molecule [7].
The most accurate limit on atomic EDM comes from a Hg
experiment [8]. It is worth emphasizing that, while no EDM
has been discovered yet, the current limits on eEDMs are
very powerful. These limits have ruled out many extensions
to the standard model including minimal supersymmetry and
severely constrained SUSY models in general.

Here we focus on T-odd, P-even (TOPE) interactions.
TOPE interactions are far less explored than the described
P-odd and P,T-odd couplings. One reason for this paucity of
data is of a theoretical nature: phenomenological Lagrangians
for TOPE interactions involve field derivatives; thereby, in
most popular models such terms appear only as radiative
corrections. Another reason is purely experimental: there is no
convenient observable, like the EDM, associated with TOPE
interactions. This makes designing experiments more chal-
lenging. So far only two types of atomic physics experiments
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have been suggested and carried out for TOPE interaction
searches. Here we propose an alternative to these searches.

Before describing our proposal, we review the previous
efforts and the established limits. The positronium experiment
[9] relied on the compelling arguments of the CPT theorem,
which implies that nonvanishing TOPE interactions would
violate charge conjugation symmetry. The experiment probed
the C-forbidden single-photon transition between the 2 3S1 and
2 1P1 states of positronium. That led to a constraint on the
electron-positron TOPE interaction H e−ē

T :

〈2 1P1|H e−ē
T |2 3P1〉

E1P1 − E3P1

= 0 ± 0.036 . (1)

The second search [10], proposed by Kozlov and Porsev
[11], focused on the T-odd correlation k · E in the refractive
index of atomic vapor near the 6p1/2 −→ 6p3/2 transition
in thallium. Here k is the photon momentum and E is the
external dc electric field. The experiment on Tl was carried
out on a particular hyperfine transition and placed a limit on
the electron-proton interaction (with a valence proton in the Tl
nucleus). One can think of this interaction as a T-odd hyperfine
structure.

The experiment [10] placed the following limit on the
nuclear-spin-dependent (NSD) interaction:

〈6p1/2|H NSD
T |6p1/2〉

E6p3/2 − E6p1/2

= (0.9 ± 2.0) × 10−3. (2)

Up to now (1) and (2) are the only direct experimental
limits on TOPE interaction in atoms. Stronger indirect model-
dependent limits can be obtained from the EDM experiments.
Indeed, in the second order of perturbation theory, T-odd and P-
odd interactions generate effective P,T-odd interaction. This,
in turn, contributes to the EDMs of elementary particles and
atoms. Khriplovich noted that for the short-range interaction
this mechanism leads to very stringent bounds on the short-
range TOPE interaction [12,13]. For the long-range TOPE
interaction such indirect limits are less stringent, but still
stronger, than the direct limits (1),(2) [10]. Note, however,
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that the indirect limits are model dependent; i.e., they depend
on assumptions with respect to employed phenomenological
Lagrangians.

In nuclear physics, the constraint on TOPE comes from
level-repulsion statistics in chaotic nuclear spectra [14,15].
For such a system, the Hamiltonian may be represented as a
block-diagonal matrix, where each block corresponds to states
of the same total angular momentum and parity. If we are
merely interested in statistics of level spacings, we can avoid
diagonalizing or even constructing the Hamiltonian. Instead
one could consider ensembles of random matrices whose
matrix elements are independent random variables (for nuclear
physics applications, see Ref. [16]). These random variables
are described by a Gaussian distribution with a fixed variance.
Ensemble averages of fluctuation measures (such as the �2

measure used in Ref. [14]) agree well with experimental data,
despite the unrealistic many-body interactions such matrices
contain.

More generally, any open-shell system of interacting
fermions exhibits quantum chaos. Technically, any quantum
system with a nonseparable wave equation is chaotic; this
includes even such simple systems as neutral helium [17].
For our purposes, this is much too broad a criterion. We are
interested in atoms with chaotic spectra that are also dense
(containing a statistically large number of levels). We also
require strong interactions between valence electrons so that
the total angular momentum and parity are the only “good”
quantum numbers (see Sec. III as well as [18] for further
discussion of this point).

For these reasons, rare-earth-metal atoms are the ideal can-
didates for our search. Their Hamiltonians can be modeled with
random matrix ensembles (RMEs) exactly as described above
for nuclei. Practically, the most useful criteria to distinguish
between chaotic and regular (integrable) quantum systems
is the distribution of nearest-neighbor spacings of energy
levels. Regular systems exhibit an exponential distribution for
nearest-neighbor spacings, while chaotic systems follow the
Wigner distribution [17,18].

The basic idea of this paper is to point out the utility of
the level-repulsion statistics method of nuclear physics for
searching for TOPE interactions in atomic physics.

II. METHOD

Spectra in nuclei and complex open-shell atoms exhibit
quantum chaos, characterized as described in Sec. I. We can
model such many-particle systems with RMEs. If T reversal
is preserved, all the Hamiltonian matrix elements may be
taken as real random variables, whereas if T reversal is
broken, the matrix elements are, in general, complex. The
real and imaginary parts of Uij are independent random
variables. Therefore, as described in the Appendix, T-violating
interactions lead to enhanced level repulsion (quadratic, rather
than linear, for small spacings).

To search for TOPE interactions, following [14], we use an
RME of the form

{Hα} = {H (S) + iαH (A)} . (3)

Here the {H (S)} matrix is real and symmetric, representing
the dominant electromagnetic interactions, and {H (A)} is

real and antisymmetric, characterizing TOPE interactions. We
assume that both random matrices have the same variance
v2 for all matrix elements, with the real parameter α � 1
determining the relative strength of TOPE and electromagnetic
interactions. The α = 0 case is conventionally termed the
Gaussian orthogonal ensemble (GOE), while α = 1 is known
as the Gaussian unitary ensemble (GUE), with reference to the
symmetry groups their respective Hamiltonians possess. From
perturbation theory, it should appear plausible that �, defined
by

� = α2v2/D2(E), (4)

is a more useful parametrization of the relative strength of the
TOPE interactions than α; one may think of it as the square of
the expected value of the perturbation (although technically,
〈H (A)〉 = 0 since H (A) is antisymmetric).

Before we can compare experimental spectra with RME
predictions, we must “unfold” the spectra. This is necessary
because RMEs have a uniform level density (alternately, the
average level spacing is uniform), whereas real spectra clearly
do not. To unfold the spectra, one would first construct the
number staircase function N . Formally, it is given by Ref. [16]

N (E) =
∫ E

−∞

∑
i

δ(E′ − Ei) dE′, (5)

i.e., N (E) is simply the number of levels with energy less than
or equal to E. By fitting a polynomial of reasonable order to
N (E), one would obtain Nf it (E), and differentiating this with
respect to E would give the average level density ρ(E).1 The
final step would be to map each old eigenvalue Ei to a new
eigenvalue εi with the formula εi = ∫ Ei

−∞ ρ(E)dE. But since
ρ(E) = d

dE
Nf it (E), the unfolded eigenenergies εi are simply

given by

εi = Nf it (Ei), (6)

so that the unfolded energies are dimensionless with uniform
average level spacing equal to unity.

We now introduce statistical measures with which we may
compare unfolded data to the predictions of the RMEs. For our
purposes, the most useful statistic is �2(r), the variance of the
number of levels in an energy interval that contains r levels
on average. (Note that the unfolded spectra is dimensionless
with average level spacing equal to unity, so an energy interval
of length r contains r levels on average.) Define n(ε,r) to be
the number of levels in a small energy interval of length r at
energy ε (i.e., the number of levels between ε and ε + r). Then
�2(r) is given by

�2(r) = n2(ε,r) − n(ε,r)
2 = n2(ε,r) − r2, (7)

where the over bar denotes a running average over the
measured spectra; note that n(ε,r) = r only for unfolded data.

In most nuclear physics applications, a different statistic,
known as the spectral rigidity, �3, is preferred over �2(r),
primarily because �3 is smoother and fits data to a GOE more

1Note that the average level spacing D(E) is simply the inverse of
ρ(E).
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easily [16]. Qualitatively, �3 measures a spectrum’s deviation
from the best-fit uniform spectrum. The two statistics are
related, however, and in fact �3 can be expressed as an integral
over �2(r) [19]. However, �3 also “washes out” the distinction
between GOE and GUE at small spacings where TOPE would
be most evident, so for our purposes �2(r) is more useful.

The crucial point is that TOPE interactions make �2(r)
smaller because of greater level repulsion. Lengthy derivations
[20] demonstrate that for the relevant case of small �,

�2(r,�) ≈ �2(r,0) − 4�, (8)

i.e., the variance decreases and spectral uniformity increases as
level repulsion is increased from the T-preserving case �2(r,0).

III. SENSITIVITY AND EXPERIMENTAL REALIZATION

We now consider how stringent a bound such a test could
place on α. The sample error σ is simply a function of the num-
ber of levels considered p, so from the central limit theorem
we would expect to have σ ∝ p−1/2. Detailed calculations
verify this [20]; in fact, �2(1) has a χ2

p distribution, so the
sample error is simply σ ≈ 0.6(2/p)1/2�2(1,�).2 Roughly,
�2(1,�) ≈ 1/2 [20]. Therefore, to obtain a bound on α at the
10−3 level, comparable to the experimental bound from Eq. (2)
and an order of magnitude more stringent than the positronium
bound from Eq. (1), would require ∼105 levels.

How many chaotic atomic states can we expect to find?
Obviously there are infinitely many levels of a given J and
parity including Rydberg series, but we are only interested in
chaotically mixed compound states. The authors of Ref. [21]
performed configuration interaction calculations on Th in
order to estimate density of states. For Th II, they estimate
that there are ∼103 compound states with J = 3/2 and even
parity. Except for a few low-lying states, nearly all of these
levels are chaotic and suitable for our purposes. We assume that
a comparable number of levels would be found for different
angular symmetries and in different atoms. Spectra could
be measured for the neutral and singly ionized lanthanides
(perhaps even doubly ionized), giving perhaps 10–30 species,
depending on experimental challenges. If ∼10 sequences with
different angular symmetries are measured in each species,
achieving �105 levels seems optimistic but plausible.

Accurately locating ∼105 levels presents a daunting task,
but it should be possible with reasonable efficiency using
frequency comb (FC) spectroscopy. Prior works have used
the molecular fingerprinting technique to measure molecular
spectra in a massively parallel fashion (see, e.g., [22–24]
or [25] and [26] for surveys of experimental methods).
Essentially, these experiments use the many teeth of the
FC, like thousands of cw lasers simultaneously probing the
sample. The same technique could be applied to the dense
level structure of the lanthanides. However, for our purposes
we need spectra with no spurious or missing levels, which
demands FC coverage from the visible to the mid-UV and,
perhaps, even into the vacuum-UV or extreme-UV for ionized
species. Such FCs already exist in the visible and near-IR, and

2The reduction in σ by a factor of 0.6 comes from using partially
overlapping intervals, as suggested in Ref. [20].

rapid progress has been made in extending FCs to the mid-IR
[27], to the VUV [28], and even into the XUV [29–31]. As
this technology continues to improve, measuring the necessary
spectra seems quite achievable.

Even with FC spectroscopy, making accurate angular
momentum and parity assignments for so many levels would
be challenging. It has been suggested [20] that a Bayesian
analysis could help in this task, since the approximate form for
the spacing distribution is known. This would introduce a few
spurious and missing levels. Depending on the experimental
challenges, however, it may be useful for labeling 105 levels.
Studies in nuclear spectra have shown that the effect of
spurious and missing levels can be accounted for, and as long
as their number is sufficiently small, they do not invalidate the
predictions of RME theory [16,20].

Finally, we note that this proposal is best suited to
a search for nuclear-spin-independent TOPE interactions,
experimentally and theoretically. Experimentally, the bound
on NSD TOPE from Eq. (2) is currently an order of magnitude
stronger than that on e-e TOPE interactions from Eq. (1).
The theoretical reasons are as follows. When we consider the
Hamiltonian to be block-diagonal, there is some ambiguity as
to what we consider to be the total angular momentum. First,
let us neglect the nuclear spin and the hyperfine interaction. In
the lanthanides, total orbital and spin angular momenta L and
S are not “good” quantum numbers, thanks to strong spin-orbit
coupling. In fact, the total electronic angular momentum
�J = �L + �S is the only good quantum number, along with

the parity, so we may assign blocks according to a particular
J and parity. Nearest-neighbor spacings within a block will
follow the Wigner distribution, indicating chaos [16,18]. One
may then compute fluctuation measures [i.e., �2(r)] in each
block, searching for deviations from GOE statistics. Any
detected TOPE interaction would clearly be nuclear spin
independent.

Alternately, if we include hyperfine interactions, the true
total angular momentum of the system is �F = �J + �I , where
I is the nuclear spin. Then we may choose blocks according
to a particular F and parity. However, J is still very nearly a
good quantum number, which qualitatively means that states
of a particular F are not chaotically mixed. As shown in
Ref. [18], this means that the nearest-neighbor distribution
for a particular F block will not be the Wigner distribution
but, rather, a superposition of several Wigner distributions
corresponding to the different possible J values. This distri-
bution will interpolate between a Wigner and an exponential
distribution. Since the level statistics would not correspond to
the GOE even approximately, it would be impossible to search
for a TOPE interaction represented by a small admixture of
GUE. While the level positions would certainly be affected
by the existence of some NSD TOPE interaction, such an
interaction would not be detectable from level statistics using
the methods of this paper.
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APPENDIX

In this Appendix we give an illustrative derivation of
the behavior of the level-spacing distribution for T-even and
T-odd Hamiltonians for small level separations. As long as
we are interested in very small energy splittings � between
neighboring levels, we can neglect all other states and consider
just these two levels. The random-matrix Hamiltonian then
reads

H =
(

a/2 b + ic

b − ic −a/2

)
. (9)

For the T-even Hamiltonian the parameter c can be set to
0, while for the T-odd Hamiltonian all three parameters are
nonzero. By diagonalizing this matrix we find the splitting to be

� = 2
√

a2 + b2 + c2 .

Let us assume that all nonzero parameters are random
variables with 0 average and the same variance σ 2. Then
the probability that � < ε � σ is ∼(ε/σ )3 for a T-odd
Hamiltonian and ∼(ε/σ )2 for a T-even Hamiltonian. The prob-
ability density ρ(ε) is then ∼(ε/σ )2 and ∼(ε/σ ), respectively.
Clearly, the level statistics is affected by underlying symmetry
of the Hamiltonian.
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