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Abstract

Reduced matrix elements and transition rates are calculated for all magnetic
dipole (M1) transitions within 2/2/' configurations and for some 2/3/' -
2[21' transitions in Be-like ions with nuclear charges ranging from Z = 4
to 100. Many-body perturbation theory (MBPT), including the Breit
interaction, is used to evaluate retarded M1 matrix elements. The calculations
start with a (1s)*> Dirac-Fock potential and include all possible 7 =2 con-
figurations, leading to 4 odd-parity and 6 even-parity states, and some
n = 3 configurations. First-order perturbation theory is used to obtain inter-
mediate coupling coefficients. Second-order MBPT is used to determine
the matrix elements, which are evaluated for all 11 M1 transitions within
2[21' configurations and for 35 M1 transitions between 2/3/" and 2/2/’ states.
The transition energies used in the calculation of oscillator strengths and
transition rates are obtained from second-order MBPT. The importance
of negative-energy contributions to M1 transition amplitudes is discussed.

1. Introduction

Studies of M1 transitions are much less complete than studies
of El transitions, as testified to by the small number of theor-
etical papers that have been devoted to M1 transitions [1-7]
during the past thirty years. This lack of interest is associated
in part with the fact that the probability of M1 transitions
is several orders magnitude smaller than the probability of
El transitions. In spite of the small probability, 1s> 'Sy —
1s2s *S; M1 transitions have been observed in the solar
corona and M1 transitions between states within 1s?2s2p?
configurations in OIl have been observed in spectra of
gaseous nebulae. Recently [8], the lifetime of the
1522s2p 3P, level of Ar XV was measured using metastable
Ar'** ions produced by an electron cyclotron resonance
ion source. It was found [8] that the rate derived from the
measured lifetime differed significantly from both
nonrelativistic [9] and relativistic [7] calculations of M1
transition rates. It should be noted that, for M1 transitions
within a single configuration, differences between relativistic
and nonrelativistic calculations are insignificant.

The purpose of this paper to calculate the forbidden
2s2-2s3s, 2s2p-2p3s, and 2s2p-2s3p MI transitions in
berylliumlike ions. We also calculate M1 transitions within
2s2p and 2p? configurations, and confirm that our results
for allowed 2/-2/ transitions are in good agreement with
other theoretical results.

In the present paper, we use relativistic many-body per-
turbation theory (MBPT) to determine reduced matrix
elements and transition rates for all lines in 2/2/ con-
figurations and for some 2/3/" — 2/2/’ lines in Be-like ions with
nuclear charges ranging from Z = 4 to 100. Our calculations
start from a (1s)*> Dirac-Fock potential, and include all poss-
ible n =2 configurations, leading to 4 odd-parity and 6
even-parity states; they also include some n =3 con-
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figurations. Second-order MBPT is used to determine the
matrix elements, which are evaluated for the 11 transitions
inside 2/2/' configurations and for 35 transitions between
states of 2/3/" and 2/2/’ configurations. The transition energies
used in the calculation of transition rates are evaluated using
second-order MBPT. Negative-energy contributions to the
transition amplitudes are included. The present calculations
provide a theoretical benchmark for future experiments
and calculations.

2. Method

In this section, we write down and discuss the relativistic
MBPT formulas for first- and second-order transition matrix
elements in atomic systems with two valence electrons. It
should be noted that the primary difference in the theoretical
expressions for E1 and M1 transition matrix elements occurs
in the first-order. Details of second-order MBPT calculations
for E1 matrix elements were presented in [10]; here we give the
expression for the first-order M1 matrix element only and
refer the reader to Ref. [10] for a discussion of second-order
diagrams. The present results are given in the Coulomb gauge.
It should be noted that gauge transformations of the type con-
sidered in [10] have no effect on M1 matrix elements.

2.1. Basic formulas

The first-order reduced dipole matrix element M1 for the
transition between two states vw(J) — vVw/(J') is [11]

MO[yywi(J)—=vawa(J')]

= [J1[J] Z ZS"(vlwl, vw)SJ/(vzwz, v'w')

wov'w

% (_1)1+jw+j\’{ JoJ

. . . }Mv’wévw’v (1)
Sy Jw v

where [J] = 2J + 1. The quantity S’ (v;wy, yw) is a symmetry
coefficient defined by

SJ(V1W1, W) = Ny [51’1"5w1w + (_1)jv+jw+J+l5v|w5w1v]s ()
where 17,,, is a normalization factor given by

forw#v

1
Mow = { 1/3/2  for w=rv.

The magnetic dipole matrix element M,,, which includes
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retardation, is given by

6 o0 Ky + Ky) .
M,y =(=k,[|Ct | Ky) / dr( )]1(](7)
(Xk 0 2

% [Go (N Eu(r) + Fs(r)Go(r)]. 3)

Here x, is the angular momentum quantum number
[k, =F(jy+1) for jy=(,+)], and k=wo, where
w = &, — &, is the photon energy and « is the fine-structure
constant. The quantity Cj,(7) is a normalized spherical
harmonic. The functions G,(r) and F,(r) are large- and
small-component radial Dirac wave functions, respectively.
The nonrelativistic limit is different for transitions inside of
one configurations, n, = n,,, and transitions between different
configurations, n, # n,. For the case n, = n,,, we obtain

2

~ PP, 4)
X/o drP, (PP (r).

MYR = — (=i, |1 Crll) (s + 160 — 1)

where P,(r) is a nonrelativistic limit the large-component
radial wave function G,(r). The case n, # n,, was considered
in [11-16] for 1s> 'Sy—1s2s 3S; transitions. The nonrelativistic
limit in this case is proportional to Z2, and for transitions with

I, = [, = 0 the matrix element is given by

=z

2 00
d 2 2
X |:Z /0 drP,(r)P,,(r) + — 277 / r drPV(r)Pw(r)i| .
(5)
Using hydrogenic wave functions, we find
s MR = 22 ©)
192% - 27\/“ 2s3s — .

Second-order contributions to E1 reduced matrix elements
are written out in [10]. It is only necessary to replace the quan-
tities Z,,, in Ref. [10] by M,,, to obtain the corresponding
second-order contributions to M1 reduced matrix elements.
The reduced matrix element for the derivative term is given
by

(1)
yw El w’)
x P [pyp(J) —

MY [yw() —v'w' ()] =a () —
V' (J)], (7

where E()). is the first-order correction to the energy given by

w2

Egs. (2.8-2.10) of Ref. [21]. The quantity P“™ introduced

Table 1. Uncoupled M1 reduced matrix for Fe™?* Notation: np =nps,», np*=np;,>, 3d=3ds,,,

3d*= 3d3/2

(a) Coulomb Interaction:

ww[J] Vw[J'] MD plderv) M®RPA) M (o)
2s2p*[0] 2s2p*[1] 1.154620 1.154620 -0.000023 0.000027
2s2p*[0] 2s2p [1] 0.814777 0.814777 0.000065 -0.000016
282p [1] 282p [1] 2.848083 2.848083 0.000112 0.000137
2p*2p [2] 2p*2p [2] 6.365538 6.365538 0.000006 0.000800
2p*2p [2] 2p2p [2] —-1.288276 —-1.288275 -0.000103 -0.000059
2p2p [2] 2p*2p [2] -1.288276 —-1.288275 -0.000103 -0.000059
2p2p [2] 2p2p [2] 7.279830 7.279830 0.000110 0.000598
2s2s [0] 2s3s [1] 0.003755 0.000018 0.000053 -0.000243
2s2s [0] 2s3d*[1] -0.001221 0.000694 0.000002 0.000131
2p2p [0] 2p3p [1] 0.005110 0.001239 —-0.000024 —-0.000325
2s2p*[1] 2s3p*[0] -0.001347 -0.001787 -0.000023 -0.000102
2s2p [1] 2p3d*[0] -0.000611 0.000347 0.000001 -0.000051
(b) Breit Interaction with factor 103

VW[J] V/W/[J/] B(HF) B(RPA) B(corr) B(2)
2s2p*[0] 2s2p*[1] -0.214620 0.153805 -0.024369 —0.085184
2s2p*[0] 2s2p [1] -0.069154 0.015593 -0.039520 -0.093081
2s2p [1] 2s2p [1] 0.012768 0.102957 —-0.095533 0.020192
2p*2p [2] 2p*2p [2] 0.395632 -0.210116 -0.398355 -0.212839
2p*2p [2] 2p2p (2] 0.109343 -0.024654 —0.064385 0.020303
2p2p [2] 2p*2p [2] 0.109343 -0.024654 -0.064385 0.020303
2p2p (2] 2p2p (2] 0.042419 0.131645 -0.155396 0.018668
2s2s [0] 2s3s [1] -0.012301 0.031090 0.039747 0.058535
2s2s [0] 2s3d*[1] 0.004822 -0.014542 -0.069244 -0.078964
2p2p [0] 2p3p [1] -0.012286 -0.031559 0.093758 0.049912
282p*[1] 2s3p*[0] 0.111038 -0.090110 -0.101976 -0.081049
2s2p [1] 2p3d*[0] 0.002411 -0.007271 0.013019 0.008159
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above is given by
P ywi (J) = vawa(J)]
=[] Z Z ST (viwi, yw)S? (vaw, Vi)

wo vw/

(g T 1
x (_1)1+]u.+]vf { . . . } MS{Srv)évw” (8)

]v’ ]w ]v

where
erv 6 o KV + Kw . .
M =il o [ ar I ) — o o
OCk 0 2

X [Gy(r)Fy(r) + Fu(r) G, (r)] - )

All second-order correlation corrections above are from the
residual Coulomb interaction. To include correlation correc-
tions from the Breit interaction, the Coulomb matrix element
Xy(abed) must be modified according to the rule:

Xi(abed) — Xi(abed) + Mi(abed) + Ni(abced). (10)

The magnetic radial integrals Mj; and N, are defined by
Egs.(A4, AS) in Ref. [17].

2.2. Uncoupled matrix elements

In Table I, we list values of MWD, pHE) pf(RPA) - prlcorr) and
PUe) for transitions in Be-like iron, Z=26. Two types of
transitions are presented: those with no change of principal
quantum number (2-2 transitions) and those with a unit
change of principal quantum number (2-3 transitions). It
should be noted that the contribution from the HF diagram,
MWD vanishes in the present calculation since we use HF
basis functions. In the table, we use the label B to denote
the Breit contributions and we tabulate 1000xBHP),
1000 x BRPA) 1000x B, together with the sum, 1000x B>,
It can be seen from Table I that the largest difference (a factor
of 1000) between two types of transitions occurs in the values
of the first-order matrix element M. However, there are
no large differences for the second-order diagram contri-
butions (M®PA) - prom) and Breit contributions (BHP),
BRPA) - Bleorny Ty interpret this observation we consider
the Z-dependence of a typical second-order diagram

M, iv&v'wwi

M(corr) ~
&t &y — &y — &y

iwgP'

(11)

Here P’ denotes the model space of w'v'. The intermediate
state energy ¢; takes both positive, & > mc?, and negative,
& < —mc?, values. To begin, we focus on the positive-energy
contribution to such diagrams. The magnetic-dipole matrix
element M;, involving an intermediate state can be either
of order of 1, provided |i) = |v) is allowed by the condition
yw¢ P, or of order of (2Z)°, otherwise. The leading term
of Coulomb matrix element Xj(abcd) is proportional to Z.
The Breit interaction is proportional to «?>Z? and ¢ is
proportional to Z2 As a result, we obtain two different
Z-dependences for M(©°™ and Bo™:

142 for n; = my - pleom o {ocZZ
oZ form; #n,

for n; =n,

for n; # n,.

M(corr)
& { OC4 Z3

For transitions inside the same model space (2/,2/, — 2/521y),
the upper case is never realized, since the condition
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vw¢ P’ is not satisfied. The upper case is realized for
transitions such as 2s2p3;» — 2s3ps;,. For such transitions,
the lowest-order matrix element is suppressed by («Z)*; thus,
the leading contribution to uncoupled matrix elements arises
from the second-order diagrams.

2.3. Contribution from the negative-energy states

Ab initio relativistic calculations require a careful treatment of
negative-energy states (virtual electron-positron pairs), which,
if included improperly, lead to the continuum dissolution
problem discussed by Sucher [18]. A common approach to
relativistic calculations is to use the no-pair Hamiltonian,
which excludes the negative-energy states (NES) [18,19].
However, the NES contribution appears in the evaluation
of transition amplitudes. In the second-order expres-
sions (11), such contribution explicitly arises from the terms
in the sum over states i and #n for which &; < —mc?. The effect
of the NES contributions to Ml-amplitudes has been studied
recently for heliumlike ions in [15,16,20]. In Ref. [20] it was
demonstrated that for nonrelativistically forbidden
magnetic-dipole transitions the relative contribution of
NES grows for low Z as 1/Z in calculations using a
model-potential basis.

To understand the relative importance of NES for Be-like
ions, we consider the scaling of leading terms in an oZ
expansion of various diagrams for uncoupled matrix
elements. As discussed in Section B, the leading regular
no-pair contribution to the total value of uncoupled matrix
element for 2/;2/, — 253314 transitions scales either as (ocZ)2
or as 1/Z, depending on the selection rules intermediate
states. The leading term for 2/,2/, — 215214 transitions is of
order of 1 and arises from the non-relativistically allowed
lowest order. The analysis of the NES contribution is similar
to that given in Ref. [20]. First, we notice that the energy
denominator can be replaced by —2mc?> with an accuracy
of (xZ)*. Further, we take into account that the meaning
of “large”and “small” components for a negative-energy state
is reversed, i.e., the large component is «Z times smaller than
the small component. The magnetic-dipole matrix element
M;, couples the large component of the positive-energy state
|v) and the small component of the negative-energy state
|7). Therefore, as can be seen from Eq. (3), M;, «x 1/aZ.
Applying the same argument to the Coulomb and Breit
matrix elements, we arrive at the conclusion that the NES
contribution scales as «’>Z for both Breit and Coulomb
contributions.

M(_corr) ~ B(_corr) ~ 0622.

We see that the relative contribution of NES to uncoupled
magnetic-dipole amplitude scales as o>Z for 2/,2/ — 21521,
transitions, and as (ocZ)2 or 1/Z for 21121, — 25531, transitions,
depending on the leading order of the regular no-pair
contribution.

2.4. Coupled matrix elements

Physical two-particle states are linear combinations of
uncoupled two-particle states (vw) in the model space that
have fixed values of angular momentum and parity; con-
sequently, transition amplitudes between physical states are
linear combinations of the uncoupled transition matrix
elements given in Table I. Expansion coefficients and energies

© Physica Scripta 1999
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are obtained by diagonalizing the effective Hamiltonian as
discussed in [21]. The first-order expansion coefficient
Ci(vw) is the A-th eigenvector of the first-order effective
Hamiltonian, and Ej} is the corresponding eigenvalue. In
the present calculation, both Coulomb and Breit interactions
are included in the first-order effective Hamiltonian. The
coupled transition matrix element between the 7/-th, initial
eigenstate which has angular momentum J and the F-th final
state which has angular momentum J’ is given by

0 — F) = % Z Z Clow)CEF(v'w')

| —Ef & &
x {lewy — evw][MUTP[ow(J) — v'w'(J)]
+ BOww(J) — Vw'(J)]
+[Ef = Ef — e + &0 ]
x P9 pw(J) — v'w'(J)]}.

Here, &, =&, +&, and MU+D = p) 4 pp(RPA) 4 pr(corr)
Using these formulas and the results for uncoupled reduced
matrix elements given in Table I, we transform from
uncoupled reduced matrix elements to intermediate coupled
reduced matrix elements between physical states.

To cite a specific example, in Fig. 1 we present the mixing
coefficients as functions of Z for the 2s3p 3P, level. It should
be noted that the odd parity complex with J =1 includes
7 two-particle states 2s3pi;, 283p3n, 2pis23s, 2p3je3s,
2p1/23d3/2, 2p3/23d3/2, and 2p3/23d5/2. After diagonalization,
the 7 eigenvectors are labeled 2s3p 'Py, 2s3p *Py, 2p3s Py,
2p3s 'Py, 2p3d 3Dy, 2p3d 3Py, and 2p3d 'P;. These states
form the complex of final states, labeled by “F” in Eq. (18),

P(F) = CF(253p12)P(253p1)2) + CF(253p3/2) P(253p3)2)
+ CT(2p1/239)P(2p1/235) + C"(2p3/235) P(2p3235)
+ CF(2p1/23d3/2)P(2p1,23d3)2)
+ CT(2p3/23d3/2) ¥ (2p3/23d3)2)

+ CF(2p323ds)2) P(2p3/23ds)2) - (13)

In Fig. 1, we show the Z-dependence of the 7 coefficients
CF(vw) in the above expansion. We can see from this figure
that the largest contribution to the 2s3p *P; level in the range
Z = 6-12 arises from the 2s3p, , state, for Z = 13-50 is from
the 2s3p;/» state, but for Z = 51-100 the contribution of the
2p1,23s state becomes dominant. We observe similar complex
behavior of mixing coefficients for other levels.

The importance of these mixing coefficients is demon-
strated in Fig. 2. We can see a series deep minima in Fig.
2, where the M1 coupled matrix elements are shown as
functions of Z with the single initial state 2s2p *P, and seven
final states from the odd-parity complex with J = 1. Most
of these minima are at the mixing coefficient crossings shown
in Fig. 2. We investigated the Z-dependence of the uncoupled
matrix elements M2 = M 4 pyRPA) 4 pp(corm) apd B

for the seven wuncoupled matrix elements with
(vw) =282p1p[0]  and (VW) =283pip[l],  2s3p3p[l],
2p123s[1],  2p3p23s[1],  2p123d3p2[1],  2p3/23d3pp[l],  and

2p3,23dso[1]. There are no peaks for these matrix elements.
There are minima in two curves for B, but the contributions
of these matrix elements are 100 times smaller than the con-
tribution of the other five matrix elements for B®. Moreover,
they do not effect the coupled matrix elements shown in Fig.
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Fig. 1. Z-dependence of the mixing coefficients for 2s3p *P; level.
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Fig. 2. Z-dependence of the M1 coupled matrix elements.

2. We conclude that the mixing coefficients alone are respon-
sible for the minima in the coupled matrix elements.

Let us return to the discussion of negative-energy con-
tributions. In Table I1, we list the values of the coupled reduced
matrix elements calculated with and without NES contri-
bution for Fe™?2. We can see that the relative contribution
of NES is ~0.03% for transitions inside the 2/2/" configuration
space and ~3% for 2/2/, — 21331, transitions. Since the
scaling of NES contribution, discussed in Section B, does
not depend on a transition, we devise the qualitative rule:
the negative-energy contribution is most important for the
weakest transitions in a given transition array. Predictions
from this rule can be easily verified by analyzing values in
Table II.

Figure 3 illustrates the relative size of contributions of NES
to several transitions inside the 2/2/" configuration space. We
observe very small relative NES contributions for these
transitions. These contributions grow with increasing nuclear
charge, in agreement with the expected Z-dependence, and
are bound by 0.3% at Z = 100. The relatively small NES effect
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Table I1. Coupled reduced matrix elements M1 for Fe™>% Comparison MI — calculated with (a) and

without (b) negative—energy component. Notation: np= nps,,np* =npy,,3d = 3ds,, 3d* =

3dsj;.

Ll LST Ly L'SJ MI? MI1b ywlJ] Vw[J]

282p Py 2s2p *P 1.396484 1.396742 252p*[0] 252p*[1]

252p 3P 252p 1Py 0.215871 0.215909 252p*[0] 2s2p[1]

2s2p 3P, 2s2p 3P, 1.559213 1.559367 2s2p[2] 2s2p*[1]

252p 3P, 252p 1Py 0.242869 0.242893 252p[2] 252p(1]

252 1S, 2535 38, 0.003715 0.003701 2525[0] 2s3s[1]

252 1S, 2s3d 3D, 0.001171 0.001161 2s2s[0] 2s3d*[1]

2p% 3P, 2835 1S, 0.001237 0.001271 2p*2p*[0] 2s3s[1]

2p? 3P, 2p3p 3Dy 0.006483 0.006535 2p*2p*[0] 2p*3p[1]

2p? 3P, 2p3p 3S; 0.001821 0.001835 2p*2p*[0] 2p3p*[1]

2p? 3Py 2p3p *P, 0.002964 0.002915 2p*2p*[0] 2p3p [1]

20 'S, 2p3p 'P, 0.000964 0.000997 2p2p[0] 2p*3p*[1]

2p% 1S, 2p3p D, 0.001608 0.001629 2p2p[0] 2p*3p[1]

2p? 1S, 2p3p 38, 0.001354 0.001321 2p2p[0] 2p3p*[1]

252p 3P, 2s3p 3P, 0.001906 0.001932 252p*[1] 253p*[0]

2s2p *P; 2p3s *P 0.002133 0.002062 2s2p*[1] 2p*3s[0]

2s2p 3Py 2s3p 1P 0.001422 0.001396 2s2p*[0] 2s3p*[1]

2s2p 3Py 2p3s 3P, 0.003406 0.003340 2s2p*[0] 2p*3s[1]

252p 3Py 2p3s 'P; 0.001119 0.001143 252p*[0] 2p3s[1]

is explained by the non-relativistically allowed character of the

transitions inside the 2/2/" configuration space, the relative

contribution of the second-order diagrams being comparably 0.00

small. The transitions between 2/,2/, and 2/33/, configuration

spaces are non-relativistically forbidden; therefore, the 005

NES effect on the transition amplitudes is amplified. To illus- ¢

trate this assertion, in Fig. 4 we present the Z-dependence 5 .10}

of relative NES contribution to the line strength (or rate) % 1
for several 2/,2/, — 21331, transitions. We see that the ratio £ 5| == 2s2p zPO-252p TPI 4
(Su+p — Sp)/Suyp for these transitions can be as large as U"% o §S§p3§0_isip3§

25% and the NES contribution is the most important for & a9 | - ._. 2225 3P1:222§ P

low-Z calculations, in accordance with the expected Z ——% 252p 31>f_2§2p ‘pi

dependence. On this plot, we can see several irregularities 025 |

which are the reflections of minima in the total values of

M1 coupled matrix elements. It is worth emphasizing that 030 ‘ ‘ , ‘ . , ‘ ‘ ‘ '
the contribution from the negative-energy states can be com- 0 10 20 30 40 50 60 70 8 90 100

parable to the regular no-pair contribution for transitions
involving different configuration spaces.

3. Results and Discussion

We calculate line strengths and transition probabilities for the
11 M1 transitions inside of 2/2/' configurations and the 35 M1
transitions between 2/3/ and 2/2/' states for all ions up to
Z=100. The theoretical energies used to evaluate these
transition probabilities are calculated by using second-order
MBPT [21].

In Table III, we list the values of line strengths S, calculated
for all of the above mentioned M1 transitions. These values are
given for Z = 10, 20, 40, 60, 80, and 100. We use both LS- and
Jjj-coupling designations to label the levels. We can see from
this table, that some LS forbidden transitions with very small
S-values for Z =10, 20, for example 2s2p 3P;-2s2p ' P,
and 2s2p 3Py — 2s3p Py, become allowed in jj-coupling with
substantially larger S-values for high nuclear charges. On
the other hand, some LS allowed transitions, for example
2p? 3Py — 2p3p 3Py, become forbidden in the jj-coupling.
It should be noted that even though the S-values for
transitions inside the same configuration space are much
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Nuclear charge Z

Fig. 3. Z-dependence of the ratio (S,4, — S,)/Sy+p in % for transitions into
2s2p configuration.

40 I j j s 1
35 o——e 2s2p P -2s3p P, |
I S 252p P, - 253p P,
30 - ---=20p°P,-2p3s°P,
3 1
25 L "\‘ a--=c232p P, -2p3s P,
20 - -
|
®O15F N 7
R=] n
= 10 ¢ o *a y i
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B Lo o oo
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Nuclear charge Z

Fig. 4. Z-dependence of the ratio (S,1, — S,)/Sy+p in % for 2-3 transitions.
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Table 111. Line strengths (S) as function of Z.

[LS designations] Z=10 Z =20 Z =40 Z =60 Z =280 Z =100 [ jj designations]
2s2p 3Py 2s2p 3P, 2.00(0) 1.99(0) 1.72(0) 1.47(0) 1.39(0) 1.37(0) 2s2p*[0] 2s2p*[1]
2s2p 3Py 2s2p 'P, 6.73(—5) 9.67(—3) 2.77(~1) 5.10(—1) 5.67(—1) 5.50(—1) 252p*[0] 2s2p[1]
2p° 3P, 2p” P, 2.50(0) 2.36(0) 2.12(0) 9.21(—1) 9.03(—1) 9.49(—1) 25*2p[1] 252p*[2]
2p? 3P, 2p2 'D, 8.23(—4) 1.36(—1) 1.38(0) 1.55(0) 1.53(0) 1.43(0) 2p*2p[1] 2p2p[2]
252 1S, 2p? 3Py 2.21(—6) 2.45(—4) 6.36(=3) 1.30(=2) 1.28(=2) 1.08(—2) 252s[0] 2p*2p[1]
282 1S, 2s3s 38, 1.90(=7) 4.46(—6) 8.58(—35) 491(—4) 1.77(=3) 5.09(—3) 252s[0] 2s3s[1]
2p? 3Py 2p3p D, 2.26(—8) 7.26(—6) 3.07(—4) 1.74(=3) 5.99(-3) 1.59(=2) 2p*2p*[0] 2p*3p[1]
2p° 'S, 2p3p S, 1.15(=7) 2.17(=7) 2.54(—4) 1.89(-3) 7.68(—3) 2.56(—2) 2p2p[0] 2p3p*[1]
2p* 'S, 2p3p *P, 5.30(=7) 1.88(=95) 2.17(—4) 9.36(—4) 2.93(-3) 7.24(-3) 2p2p[0] 2p3p[1]
2s2p 'P, 2s3p 3Py 6.01(=7) 1.46(—5) 3.34(—4) 2.01(=3) 7.85(—3) 2.57(=2) 2s2p[1] 253p*[0]
2s2p 3Py 2s3p P, 1.80(=7) 6.30(—6) 8.89(=5) 5.94(-5) 6.68(—4) 2.19(-3) 2s2p*[0] 2s3p[1]
2s2p 3Py 2p3s P, 1.16(=7) 3.14(—6) 1.03(—4) 1.04(—3) 3.17(=3) 8.13(—3) 252p*[0] 2p*3s[1]
Table 1V. Tiansition probabilities A (s~') for MI transition in
" D e -—:"5 1s*2p* and 1s°2s* configurations as function of Z: a — present
‘ FX‘?\%& oo .5_5__5550_0,0_0.8.078'-0-0'0'2'?; calculations, b — Glass (1983).
OO oo - B e e e
C o0t ! /';: T REEEDEE Y 1 z py—3pP P -3P, Py-'Py PPy-'P 3P -'P
S I " =, 6 a 2.68-7)  2.50(-6)  8.28(-4)  6.12(-4)  5.52(-4)
] 10? L 1 ,’( N, ] 6 b 216(-7)  2.14(-6)  198(3)  1.59(-3)  5.68(-3)
= / 7 a  A474-6)  4.11(-5)  8.42(-3)  6.36(-3)  5.42(-3)
8 0 h ‘ 7 b 428(-6)  3.76(-5)  1.63(2)  132(-2)  3.72(-2)
=100 - 8 a  475-5)  3.92(-4)  5.14(-2) 397(-2)  3.28(-2)
E ‘ \ 8 b 4505  3.71(4) 877(=2) 7.13(-2)  1.63(-1)
S - . 9 a  325(-4)  2.60(-3) 228(-1)  1.79(-1)  1.45(-1)
= 107 F e 22p°P, - 252p P, Ve 9 b 3.10(4) 246(-3)  341(-1)  2.80(-1)  5.49(-1)
2 | G 252 P, - 252p 'P, 2o 10 a  1.69(-3) 1.33(-2) 8.11(-1) 6.51(-1)  5.17(-1)
g 97 - - -u22p°P, - 252p P, g 10 b 1.63-3) 1.28(-2)  L115(+0)  9.57(-1)  1.63(+0)
= ; - 252p°P, - 22p 'P, 11 a  7.15(-3)  5.60(=2)  245+0) 2.01(+0)  1.57(+0)
1 ——-252p°P, 252p'P, 12 a  257(-=2)  2.02(-1)  6.49(+0)  5.47(+0)  4.22(+0)
10° - —‘ 12 b 2.52(-2) 1.96(-1)  8.53(+0)  7.40(+0)  2.05(+0)
: ‘ ‘ ‘ ‘ 13 a  8.12(-2)  6.46(-1)  1.56(+1)  1.35(+1)  1.03(+1)
0 10 20 30 40 50 60 70 80 90 100 230(-1)  1.87(+0)  3.43(+1)  3.09(+1)  2.32(+1)
Nuclear charge Z 14 b 227(-1)  1.83(+0)  429(+1) 3.95(+1)  1.36(+0)
Fig. 5. Z-dependence of transition probabilities 4 into 2s2p configuration. }2 2 ?2‘2‘21))) ?gig?; Zgggg ?gigg g?ig:g
17 a  3.16(+0)  2.89(+1)  2.50(+2)  2.60(+2)  1.85(+2)
i 18 a  6.65(+0)  6.40(+1)  4.38(+2)  4.84(+2)  3.39(+2)
. ’ 18 b 6.61(+0)  6.33(+1)  5.12(+2)  5.76(+2)  2.33(+2)
100 19 a  1.32(+1)  1.36(+2)  7.37(+2)  8.71(+2)  5.98(+2)
B ‘ 20 a  2.51(+1)  2.77(+2)  1.19(+3)  1.52(+3)  1.02(+3)
T 20 b 249(+1)  2.73(+2)  1.36(+3)  1.76(+3)  1.02(+3)
g 21 a  4.55(+1)  5.44(+2)  187(+3)  2.59(+3)  1.71(+3)
S ! 22 a  7.92(+1)  1.04(+3)  2.84(+3)  4.32(+3)  2.78(+3)
£ 10" - 23 a  1.33(+2)  1.91(+3)  420(+3)  7.04(+3)  4.44(+3)
8 24 a  2.15(+2)  3.45(+3)  6.05(+3)  1.13(+4)  6.95(+3)
E L0 ! 25 a  338(+2)  6.07(+3)  8.50(+3)  1.78(+4)  1.07(+4)
AN | 26 a  5.14(+2)  1.04(+4)  117(+4)  2.76(+4)  1.63(+4)
g | ﬂ‘\l / i / 21 5 260 b 5.06(+2)  1.05(+4)  124(+4)  3.03(+4)  1.23(+4)
= s EJJ ] e 252 lS0 - 2s3s 351 '
2 10 Ll ifow—02s" 'S - 253d°D, 1
Z { !l* if »—-u25"'S,-2p3p P, |
E o0t L i fo--m25 s, 2p3p D, |
l'I Prm—=2s S,-2p3p S, [ A-values for the 2-2 transitions are proportional to Z'2, since
] =25 S, - 2p3p P J the leading term of S is constant and the energy difference is
10

0 10 20 30 40 50 60 70 8 90 100
Nuclear charge Z

Fig. 6. Z-dependence of transition probabilities 4 between 2s> 'Sy levels and
6 even parity 2/3/' levels with J = 1.

larger than the S-values for transitions between different con-
figurations, the A-values for transition probabilities are of the
same order. This is explained by small energy differences
for transitions inside the same configuration space. The
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proportional to Z* The magnetic-dipole A-values for the
2-3 transitions are proportional to Z'°, since the leading term
of S is proportional to Z* and the energy difference is
proportional to Z2.

The Z dependence of transition probabilities for the five
transitions between levels of 2s2p configurations are shown
in Fig. 5. The A-values for six transitions with the initial level
252 1Sy and the 6 even parity 2/3/' levels with J = 1 are shown
in Fig. 6. We see from these plots that the A4-values for these
transitions increase from 107> s~! to 10!'' s~! in the interval
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TableV. Transition probabilities A (s~') for M1 transition in 1s*2p” and Is*2s* configurations as

function of Z. a — present calculations, b — Glass (1983).

3P073P1 3P173P2 3P171S0 3P171D2 3P271D2

z 252 1Sy — 2p? 3P, 2p* LSI —2p2 L'S'Y

6 a 6534 4.52(-7) 1.73(-6) 4.68(-3) 1.16(-5) 3.64(-5)
6 b 5334 4.09(-7) 1.32(-6) 1.92(-2) 1.98(-4) 6.30(-4)
7 a 5.82(-3) 7.29(-6) 2.81(=5) 5.51(2) 3.33(4) 1.01(=3)
7 b 4.63(3) 6.85(-6) 2.44(-5) 1.57(-1) 2.05(-3) 6.59(-3)
8 a  3.30(-2) 6.93(-5) 2.73(-4) 3.69(-1) 3.30(-3) 9.79(-3)
8 b 2.69(-2) 6.61(-5) 2.46(-4) 8.31(-1) 1.25(-2) 3.97(-2)
9 a  1.40(-1) 4.65(-4) 1.83(-3) 1.75(+0) 1.96(-2) 5.65(-2)
9 b 117(-1) 4.47(-4) 1.69(-3) 3.36(+0) 5.61(-2) 1.74(-1)
10 a 4831 2.44(-3) 9.40(-3) 6.52(+0) 8.55(~2) 2.38(-1)
10 b 4411 2.36(-3) 8.38(-3) 1.13(+1) 2.04(-1) 6.09(-1)
11 a  1.43(+0) 1.06(-2) 3.93(-2) 2.05(+1) 3.03(-1) 8.12(-1)
12 a  3.75+0) 3.97(-2) 1.40(-1) 5.62(+1) 9.27(-1) 2.36(+0)
12 b 5.06(+0) 4.04(-2) 1.37(-1) 7.34(+1) 1.72(+0) 3.99(+0)
13 a  8.94(+0) 1.33(-1) 4.34(-1) 1.39(+2) 2.53(+0) 6.11(+0)
14 a 197+ 4.08(-1) 1.20(+0) 3.17(+2) 6.34(+0) 1.44(+1)
14 b 255+ 4.27(-1) 1.20(+0) 3.97(+2) 1.05(+1) 2.19(+1)
15 a  4.09(+1) 1.16(+0) 3.03(+0) 6.72(+2) 1.49(+1) 3.13(+1)
16 a  8.00(+1) 3.09(+0) 7.02(+0) 1.34(+3) 3.29(+1) 6.42(+1)
17 a  1.49(+2) 7.79(+0) 1.50(+1) 2.55(+3) 6.99(+1) 1.25(+2)
18 a  2.68(+2) 1.88(+1) 3.00(+1) 4.65(+3) 1.43(+2) 2.35(+2)
18 b 3.36(+2) 2.09(+1) 3.09(+1) 5.58(+3) 2.09(+2) 3.19(+2)
19 a  4.63(+2) 4.33(+1) 5.60(+1) 8.15(+3) 2.84(+2) 427(+2)
20 a  1.77(+2) 9.64(+1) 9.81(+1) 1.38(+4) 5.50(+2) 7.55(+2)
20 b 891(+2) 1.10(+2) 1.01(+2) 1.69(+4) 7.72(+2) 1.00(+3)
21 a  1.26(+3) 2.07(+2) 1.62(+2) 2.28(+4) 1.04(+3) 1.31(+3)
22 a  2.01(+3) 431(+2) 2.52(+2) 3.65(+4) 1.92(+3) 2.25(+3)
23 a 3.12(+3) 8.69(+2) 3.72(+2) 5.73(+4) 3.46(+3) 3.79(+3)
24 a4 4.75+3) 1.70(+3) 5.21(+2) 8.81(+4) 6.10(+3) 6.34(+3)
25 a  7.09(+3) 3.25(+3) 6.98(+2) 1.33(+5) 1.05(+4) 1.05(+4)
26 a  1.04(+4) 6.03(+3) 8.99(+2) 1.97(+5) 1.77(+4) 1.71(+4)
26 b 1.36(+4) 7.89(+3) 9.58(+2) 2.31(+5) 2.00(+4) 1.95(+4)

of Z=6 — 100. The Z dependence for the A-value of
transitions inside the same configuration space, shown in Fig.
5, is rather smooth, compared to that of the 2-3 transitions,
presented in Fig. 6. The Z dependence for the 2-3 transitions
is more complex reflecting the tangled behavior of the mixing
coefficients.

In Tables IV and V, we present wavelengths A (A), line
strengths S (a.u.), and transition probabilities 4 (s~!) for five
transitions 3Py — 3Py, 3P; — 3P,, 3Py — ' P; within the 2s2p
configuration, five transitions *Py — 3Py, 3P, — 3P,, 3P; —
1Sy, *P; — 'D,, P, — 'D, within the 2p’? configuration,
and for the transition between 2s> 'Sy and 2p? P, levels.
It is worth noting that the transition 2s> 'Sy — 2p? 3P; is
nonrelativistically allowed only due to configuration mixing.
(The model space for the 2s®>!S, level includes three
two-particle states: 2s2s[0] + 2pi,22pi,2[0] + 2p3/22p3/2[0].)
In the Tables IV and V, we compare our data for Z =6 — 26
with the other theoretical results [5-7]. All theoretical values
agree for LS-allowed transitions: Py, — 3Py, 3P, — 3P,
transitions in 2s2p and 2p? configurations. Such agreement
can be expected, since correlation and relativistic effects
do not affect these transitions. For these four transitions,
the line strengths are almost independent of Z; S ~2 for
3P, — 3P, transitions and S ~ 5/2 for *P; - 3P, transitions.
The corresponding A-value can be accurately determined
from the transition energies, which can be obtained from
precise spectroscopic data. The experimental 4-value of 74(4)
s~! for the LS-allowed 2s2p *P; — 2s2p 3P, transition in
Ar*1'# has been recently reported in Ref. [8]. This value dis-
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agrees with previous theoretical results, 63.3 s~' [6] and
63.0 s~! [7]; it also disagrees with our predictions 64.0 s,
obtained with the MBPT energies and 63.8 s~! obtained with
experimental energies.

In contrast to the LS-allowed transitions, we disagree with
the previous theoretical values for transitions with AS = 1.
The A-values for transitions with AS =1 are determined
by the mixing coefficients, which are very sensitive to the
theoretical approximation employed. Our coefficients were
obtained as the result of diagonalizing the first-order effective
relativistic Hamiltonian. On the other hand, the LS-coupling
scheme was employed in papers [5,6] and the Breit-Pauli
approximation was used for relativistic corrections. Owing
to the common approach used in [5] and [6], the results of
these papers are in a much better agreement with each other
than with our results, especially for small Z. Further analysis
is necessary to assess the accuracy of two approaches.

4. Conclusion

We have presented a systematic second-order relativistic
MBPT study of reduced matrix elements, line strengths,
and transition rates for two types of magnetic dipole trans-
itions: with and without change of principle quantum number.
The calculations involving a change of principal quantum
number are completely new for Be-like ions. In order to con-
firm the correctness of our method, we also investigated
the well-known transitions inside one configuration and we
obtained good agreement with other calculations for
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LS-allowed transitions where relativistic corrections are not
very important. We believe that our results for inter-
combination transitions are more accurate than previous
theoretical results since we treat relativistic contributions
more carefully. Contributions from negative-energy states
were also included in the second-order matrix elements. It
was shown that these contributions are very important for
2-3 transition probabilities. Matrix elements from the present
calculations provide basic theoretical input for calculations of
reduced matrix elements, oscillator strengths, and transition
rates in three-electron boron-like ions.
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