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Abstract
Reduced matrix elements, oscillator strengths, and transition rates are cal-
culated for all allowed and forbidden 2sÈ2p electric dipole transitions in
berylliumlike ions with nuclear charges ranging from Z \ 4 to 100. Many-
body perturbation theory (MBPT), including the Breit interaction, is used
to evaluate retarded E1 matrix elements in length and velocity forms. The
calculations start with a 1s2 DiracÈFock potential and include all possible
n \ 2 conÐgurations, leading to 4 odd-parity and 6 even-parity states.
First-order perturbation theory is used to obtain intermediate coupling
coefficents. Second-order MBPT is used to determine the matrix elements,
which are evaluated for the 16 possible E1 transitions. The transition ener-
gies used in the calculation of oscillator strengths and transition rates are
evaluated using second-order MBPT. The importance of virtual electronÈ
positron pair (negative energy) contributions to the transition amplitudes is
discussed.

1. Introduction

Numerous theoretical and experimental studies of oscillator
strengths and transition probabilities for 2s2È2s2p and
2s2pÈ2p2 transitions along the beryllium isoelectronic
sequence have been made during the past 30È40 years. Z-
expansion [1È7], model potential [8È10], conÐguration
interaction (CI) [11È19], multiconÐguration HartreeÈFock
(MCHF) [20È26], R-matrix [27, 28], and multi-
conÐguration DiracÈFock (MCDF) [29È35] methods have
been used to determine transition rates in Be-like ions.

Nonrelativistic perturbation theory (the Z-expansion
method) was used in early calculations to determine Ðrst-
and second-order dipole matrix elements for allowed
2sa2pbÈ2sa~12pb`1 transitions. The earliest nonrelativistic
values of the second-order dipole matrix elements were
given by Cohen and Dalgarno [1], and by Dalgarno [3] in
the HartreeÈFock (HF) approximation. Later, Safronova
et al. [2] included correlation contributions to these matrix
elements. It should be noted that the mixing of quasi-
degenerate conÐgurations (2s22pb ] 2pb`2) was included in
all results obtained by the Z-expansion method [1È7]. Rela-
tivistic corrections were included perturbatively in some of
these calculations [4È7] and it was recently shown [6] that
the Z-expansion method with relativistic corrections gives
accurate data for Be-like ions with 6 O Z O 54.

Relativistic wave functions were used to calculate oscil-
lator strengths for Be-like ions by Kim and Desclaux [29]
and by Armstrong, Fielder, and Lin [30]. These wave func-
tions were obtained from multiconÐguration DiracÈ
HartreeÈFock (MDHF) calculations including 2s2 and 2p2
conÐgurations. Two electromagnetic gauges which in the

nonrelativistic limit give the length and velocity forms for
the transition operator were used in [30]. Disagreements
between length and velocity f-values were found for

and transitions. Even for2s2 1S0È2s2p 1P1 2s2 1S0È2s2p 3P1Z \ 92, f-values in the length and velocity forms di†ered by
5%. It should be noted that the nonrelativistic length and
velocity f-values (also calculated in [30]) agreed much better
than relativistic ones. It was shown by Cheng and Johnson
[31] that the disparity between length- and velocity-form
results in the MCDF calculations was due in part to neglect
of ““exchange overlapÏÏ terms in the evaluation of transition
matrix elements. On including these overlap terms, di†er-
ences between length- and velocity-form oscillator strengths
were found to decrease systematically with increasing Z
along the isoelectronic sequence. The relativistic random
phase approximation (RRPA) was used by Lin and Johnson
[32] to calculate oscillator strengths for the two lines

and In the truncated2s2 1S0È2s2p 1P1 2s2 1S0È2s2p 3P1.
relativistic RPA calculations [32], di†erences between
length and velocity results are small in comparison with the
di†erences obtained in MCDF calculations but remain sig-
niÐcant for low-Z elements. Including the couplings with the
1s2 shell in the full RRPA, the length and velocity results
agree to better than four Ðgures. It was found in [32], that
the velocity results for the oscillator strengths were altered
substantially by including the coupling with the 1s shell,
whereas the length results were modiÐed only slightly.
Extensive MCDF calculations were performed by Cheng,
Kim and Desclaux [33] to obtain oscillator strengths and
transition probabilities for the 16 possible E1 lines in the Be
sequence for all ions with Z O 30 and for representative ions
with Z [ 30. Only conÐgurations within the n \ 2 complex
were included to account for electron correlation and inter-
mediate coupling. Results were presented in length form
only. Accurate ab initio multi conÐguration DiracÈFock
(MCDF) calculations of lifetimes of the spin-forbidden

transition and the spin-allowed2s2 1S0È2s2p 3P1
transition in Be-like ions were performed2s2 1S0È2s2p 1P1

by Ynnerman and Froese Fisher [34]. Contributions of
valenceÈvalence correlation, core-polarization and selected
triples and quadruples were included in the calculations of
Ref. [34], and the discrepancy between length and velocity
forms for intercombination lines in the lighter ions were
investigated. The A-value for the intercombination line in
C III gave 100s~1 and 174s~1 in length and velocity forms,
respectively. A similar discrepancy between length and
velocity forms for the intercombination line in B II was

Physica Scripta 59 ( Physica Scripta 1999



Relativistic Many-Body Calculations of T ransition Probabilities in Be-like Ions 287

reported by Ynnerman and Froese Fisher [35], where the
MCHF and MCDF methods were also compared.

In the present paper, we use relativistic many-body per-
turbation theory (MBPT) to determine reduced matrix ele-
ments, oscillator strengths and transition rates for all 16
allowed and forbidden electric dipole 2sÈ2p transitions in
berylliumlike ions with nuclear charges ranging from Z \ 4
to 100. We evaluate retarded E1 matrix elements in both
length and velocity forms. Relativistic MBPT calculations
starting from a local potential are gauge independent order-
by-order, providing ““derivative termsÏÏ are included in the
second- and higher-order matrix elements and careful atten-
tion is paid to negative-energy states. The present MBPT
calculations, however, start from a nonlocal 1s2 DiracÈFock
potential and consequently give gauge-dependent transition
matrix elements. Indeed, our Ðrst-order matrix elements are
identical to the MCDF matrix elements given in Refs. [29,
30, 33] and exhibit the gauge dependence characteristic of
all such calculations. The second-order correlation correc-
tions compensate almost exactly for the gauge dependence
of the Ðrst-order matrix elements, leading to corrected
matrix elements that di†er by less than 1% in length and
velocity forms throughout the periodic system. It should be
emphasized that this close agreement is obtained only after
virtual electronÈpositron pair contributions are included in
the second-order elements. Our model space consists of all
possible n \ 2 conÐgurations, leading to 4 odd-parity and 6
even-parity states. We use Ðrst-order perturbation theory to
obtain intermediate coupling coefficients and second-order
MBPT to determine matrix elements. The transition ener-
gies used in the evaluation of oscillator strengths and tran-
sition rates are obtained from a previous second-order
MBPT calculation [38].

The present calculations lead to results for allowed tran-
sitions that are in excellent agreement with values from pre-
vious calculations throughout the isoelectronic sequence.
There are substantial di†erences, however, between the
present results and previous accurate calculations for for-
bidden transitions in the lightest few ions, owing in part to
truncating the perturbation expansion at second order.
These calculations are presented as a theoretical benchmark
for comparison with experiment and theory. The results
could be further improved by including third-order corre-
lation corrections.

2. Method

In this section, we write down and discuss the relativistic
MBPT formulas for Ðrst- and second-order transition
matrix elements in atomic systems with two valence elec-
trons. The formulas for Ðrst-order matrix elements are iden-
tical to those used in recent CI calculation [36] for He-like
ions. The second-order matrix elements consists of HartreeÈ
Fock (HF), random-phase approximation (RPA), corre-
lation, and derivative terms. The HF and RPA
contributions are identical to the corresponding terms for
atoms with one valence electron given, for example, in [37].
The correlation term is a contribution involving both
valence electrons and has no one-electron counterpart. We
use the MBPT formalism developed in [38] to describe the
perturbed wave functions, and to obtain the second-order
energies used to evaluate oscillator strengths and transition

rates ; we list only those formulas which are needed to calcu-
late reduced matrix elements in atomic systems with two
electrons above a closed core.

2.1. Basic formulas
The Ðrst-order reduced dipole matrix element Z(1) for the
transition between two states vw(J)Èv@w@(J@) is [36]

Z(1)[v1w1(J)Èv2w2(J@)]

\ J[J][J@] ;
vw

;
v{w{

SJ(v1w1, vw)SJ{(v2w2 , v@w@)

] ([11`jw`jv{
GJ

j
v{

J@
j
w

1
j
v

H
Z

v{w d
vw{ , (1)

where [J] \ 2J ] 1. The quantity vw) is a sym-SJ(v1w1,
metry coefficient deÐned by

SJ(v1w1, vw) \ g
v1w1

[d
v1v

d
w1w

] ([1)jv`jw`J`1d
v1w

d
w1v

],

(2)

where is a normalization factor given byg
vw

g
vw

\
G1

1/J2

for w D v,
for w \ v.

The dipole matrix element which includes retardation,Z
vw

,
is given in velocity and length forms (see eqs 38, 39) of Ref.
[36], by :Z

vw
\ (3/k)Svpt1(1)pwT)
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length form

Z
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\ Si
v
pC1pi

w
T

3
k
P
0

=
dr
G

j1(kr)[G
v
(r)G

w
(r) ] F

v
(r)F

w
(r)]

] j2(kr)
Ci
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[ i

w
2
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v
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(r) ] F
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(r)G

w
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] (G
v
(r)F

w
(r) [ F

v
(r)G

w
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DH

. (4)

Here is the angular momentum quantum numberi
v

[i
v
\

for and k \ au, where u is the<( j
v
] 12) j

v
\ (l

v
^ 12)]

photon energy : for The quantity isu \ e
w

[ e
v

Z
vw

. C1q
(rü )

a normalized spherical harmonic. The functions andG
a
(r)

are large- and small-component radial Dirac waveF
a
(r)

functions, respectively. The single-particle matrix elements
reduce to the velocity- and length-form matrix ele-Z

vw
(k)

ments of the dipole operator in the limit k ] 0.
As mentioned previously, the second-order reduced

matrix element Z(2) for the transition between the two states
vw(J)Èv@w@(J@) consists of four contributions : Z(HF), Z(RPA),
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Z(corr), and Z(derv) :
Z(HF)[v1w1(J)Èv2 w2(J@)]

\ J[J][J@] ;
vw

;
v{w{

SJ(v1w1, vw)SJ{(v2 w2 , v@w@)

] ([1)1`jw`jv{
GJ

j
v{
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j
w

1
j
v

H
] ;

i

CZ
v{i *iw

v
i
[ v

w
] Z

iw
*

v{i
v
i
[ v

v{

D
d
vw{ (5)

Z(RPA)[v1w1(J)Èv2 w2(J@)]
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(6)

Z(corr)[v1w1(J)Èv2 w2(J@)]
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. (7)

In the above equations, the index b designates core states, n
designates excited states, and i denotes an arbitrary core or
excited state. In the sums over i in eq. (5), all terms with
vanishing denominators are excluded. In the sum occurring
in the Ðrst term of eq. (7), states i for which (iw) is in the
model space of Ðnal states (v@w@) are excluded, while in the
second term, states i for which (iw@) is in the model space of
initial states (vw) are excluded. In the sums over n in the
RPA matrix elements (6), all core states are excluded. The
deÐnitions of and are given by eq. (2.12)X

k
(abcd) Z

k
(abcd)

and eq. (2.15) in Ref. [38] and is deÐned at the end of*
ij

Section II in [38]. The second-order reduced matrix element
of the derivative term is given by :

Z(derv)[vw(J)Èv@w@(J@)]
\ a(E

vw
(1) [ E

v{w{(1) )P(derv)[vw(J)Èv@w@(J@)] (8)

where is the Ðrst-order correction to the energy deÐnedE
vw
(1) ,

by eqs. (2.8È2.10) in Ref. [38] and the quantity P(derv) is
deÐned by

P(derv)[v1w1(J)Èv2 w2(J@)]
\ J[J ][J@] ;

vw
;
v{w{

SJ(v1w1, vw)SJ{(v2 w2 , v@w@)

] ([1)1`jw`jv{
GJ

j
v{

J@
j
w

1
j
v

H
Z

v{w(derv)d
vw{ . (9)

The expression for is obtained fromZvw(derv)
The following formulas give the velocityuSvp(dt1(1)/du)pwT.

and length forms for this quantity :

velocity form

Z
vw
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w
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length form
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(r) [ F

v
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DH

(11)

All of the second-order correlation corrections above are
from the residual Coulomb interaction. To include corre-
lation corrections from the Breit interaction, the Coulomb
matrix element must be modiÐed according to theX

k
(abcd)

rule :

X
k
(abcd) ] X

k
(abcd) ] M

k
(abcd) ] N

k
(abcd). (12)

The magnetic radial integrals and are deÐned by eqsM
k

N
k

(A4, A5) in Ref. [39].

2.2. Uncoupled matrix elements
In Table I, we list values of Z(1), Z(RPA), Z(corr), and P(derv) for
J \ 0 [ J@ \ 1 transitions in Be-like iron, Z \ 26. Both
length and velocity forms of the matrix elements are given.
In the table, we use the label B to denote the Breit contribu-
tions and we tabulate 1000 ] B(HF), 1000 ] B(RPA),
1000 ] B(corr), together with the sum, 1000 ] B(2). It can be
seen from Table I that even the Ðrst-order contributions Z(1)
are di†erent in length and velocity forms. It is also apparent
that the Breit corrections B(2) are 3È6 times smaller than
Z(RPA), and that the RPA terms are 3È6 times smaller than
Z(corr). These ratios change with nuclear charge owing to the
Z-dependence of the various terms :

Z(1) \ 1
Z

[p10 ] p12(aZ)2 ] p14(aZ)4 ] É É É ]

] 1
Z2 [p20HF ] p22HF(aZ)2 ] p24HF(aZ)4 ] É É É ] ] É É É ,

(13)

Z(RPA) ] Z(corr)

\ 1
Z2

C
p20corr ] p22corr(aZ)2 ] p14corr(aZ)4 ] É É É ]

] 1
Z3 [p30HF ] p32HF(aZ)2 ] p34HF(aZ)4 ] É É É ] ] É É É , (14)
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Table I. Uncoupled reduced matrix elements in length (L ) and velocity (V ) forms
for Fe`22. Notation : 2p \ 2p3@2 , 2p* \ 2p1@2
(a) Coulomb Interaction :
vw(J] v@w@[J@] Z(1) P(derv) Z(RPA) Z(corr)

2s2s[0] 2s2p*[1] (L) 0.172 296 0.172 301 [0.000 349 0.002 141
(V) 0.188 645 0.000 011 [0.016 192 0.028 821

2s2s[0] 2s2p[1] (L) [0.245 591 [0.245 577 [0.000 489 [0.003 047
(V) [0.262 761 0.000 026 0.017 130 [0.028 097

2p*2p*[0] 2s2p*[1] (L) [0.172 296 [0.172 301 0.000 350 [0.000 141
(V) [0.188 645 [0.000 011 0.016 192 [0.137 875

2p*2p*[0] 2s2p[1] (L) 0.000 000 0.000 000 0.000 000 [0.001 803
(V) 0.000 000 0.000 000 0.000 000 0.138 604

2p2p[0] 2s2p*[1] (L) 0.000 000 0.000 000 0.000 000 0.001 760
(V) 0.000 000 0.000 000 0.000 000 [0.052 784

2p2p[0] 2s2p[1] (L) 0.173 659 0.173 649 [0.000 345 [0.001 187
(V) 0.185 800 [0.000 019 [0.012 113 0.149 421

(b) Breit Interaction with factor 103 :
vw[J] v@w@[J@] B(HF) B(RPA) B(corr) B(2)

2s2s[0] 2s2p*[1] (L) 0.098 080 [0.004 836 0.004 279 0.097 522
(V) 1.099 649 0.907 263 [0.515 062 1.491 849

2s2s[0] 2s2p[1] (L) [0.067 346 0.000 852 [0.013 697 [0.080 190
(V) 0.618 200 [0.526 286 0.356 316 0.448 230

2p*2p*[0] 2s2p*[1] (L) [0.098 080 0.004 836 0.000 408 [0.092 836
(V) [1.099 649 [0.907 263 [1.066 757 [3.073 668

2p*2p*[0] 2s2p[1] (L) 0.000 000 0.000 000 [0.000 115 [0.001 153
(V) 0.000 000 0.000 000 1.036 049 1.036 049

2p2p[0] 2s2p*[1] (L) 0.000 000 0.000 000 [0.000 405 [0.004 047
(V) 0.000 000 0.000 000 [0.575 952 [0.575 952

2p2p[0] 2s2p[1] (L) 0.047 621 [0.000 603 0.018 465 0.065 483
(V) [0.437 133 0.372 140 1.570 535 1.505 543

B(2) \ 1
Z2 (aZ)2[b10 ] b12(aZ)2 ] b14(aZ)4 ] É É É ]

] 1
Z3 (aZ)2[b20HF ] b22HF(aZ)2 ] b24HF(aZ)4 ] É É É ] ] É É É .

(15)

We Ðnd, for example, that the Ðrst-order contribution Z(1)
for the transition decreases by a2s2p1@2(0)È2p1@22p3@2(1)
factor of 6 from Z \ 4 to Z \ 16, and by a factor 8 from
Z \ 16 to Z \ 100 (see eq. (13)). The second-order contribu-
tion Z(RPA) ] Z(corr) decreases more rapidly with Z as can be
seen by comparing eq. (13) with eq. (14). The value of this
contribution for transition decreases2s2p1@2(0)È2p1@22p3@2(1)
by a factor of 35 from Z \ 4 to Z \ 16 and by a factor of 24
from Z \ 16 to Z \ 100. The situation is completely di†er-
ent for the Breit contribution as can be seen in eq (15) ; we
Ðnd that the contribution B(2) for the 2s2p1@2(0)È

transition increases by 36% from Z \ 4 to2p1@22p3@2(1)
Z \ 16 then decreases by 3% from Z \ 16 to Z \ 100.

2.3. Coupled matrix elements
The physical two-particle states are linear combinations of
uncoupled two-particle states (vw) in the model space having
Ðxed values of angular momentum and parity ; consequent-
ly, the transition amplitudes between physical states are
linear combinations of the uncoupled transition matrix ele-
ments given in Table I. The expansion coefficients and ener-
gies are obtained by diagonalizing the e†ective Hamiltonian
as discussed in [38]. The Ðrst-order expansion coefficient

is the j-th eigenvector of the Ðrst-order e†ectiveC1j(vw)
Hamiltonian, and is the corresponding eigenvalue. In theE1j

present calculation, both Coulomb and Breit interactions
are included in the Ðrst-order e†ective Hamiltonian. The
coupled transition matrix element between the I-th, initial
eigenstate which has angular momentum J and the F-th
Ðnal state which has angular momentum J@ is given by

Q(1`2)(I [ F) \ 1
E1I [ E1F

;
vw

;
v{w{

C1I (vw)C1F(v@w@)

]M[v
vw

[ v
v{w{][Z(1`2)[vw(J)Èv@w@(J@)]

] B(2)[vw(J)Èv@w@(J@)]]

] [E1I [ E1F [ v
vw

] v
v{w{]

] P(derv)[vw(J)Èv@w@(J@)]N. (16)

Here and Z(1`2) \ Z(1) ] Z(RPA) ] Z(corr).v
vw

\ v
v
] v

w
Using these formulas and the results for uncoupled reduced
matrix elements given in Table I, we transform from
uncoupled reduced matrix elements to intermediate coupled
reduced matrix elements between physical states.

In Table II, we present values of the sixteen 2l12l2[L SJ]È
coupled reduced matrix elements in length (L)2l32l4[L@S@J@]

and velocity (V) forms for Be-like iron, Z \ 26. Although we
use an intermediate-coupling scheme, it is nevertheless con-
venient to label the physical states using the [L SJ] design-
ation. We can see that the results obtained in the two forms
(L) and (V) di†er only in fourth digit except for two tran-
sitions and These dis-2s2p 3P1È2p2 1S0 2s2p 3P1È2p2 1D2 .
agreements in the third or fourth digits arise because we use
a non-local HartreeÈFock potential. It was already shown
by Johnson, Plante and Sapirstein [36] that for He-like ions
gauge-independent Ðrst-order and second-order reduced
matrix elements can be obtained using a local Hartree or
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Table II. Coupled reduced matrix elements Q calculated in
length- and velocity-forms for Fe`22. V elocity-form matrix
elements are given with (a) and without (b) negative-energy
contributions

l1l2 L SJ l1@ l2@ L@S@J@ length velocitya velocityb

2s2 1S0 2s2p 1P1 0.256 978 0.257 267 0.256 155
2s2 1S0 2s2p 3P1 0.034 580 0.034 611 0.035 404
2s2p 1P1 2p2 3P0 0.034 859 0.034 812 0.035 684
2s2p 3P1 2p2 3P0 0.175 435 0.175 672 0.175 257
2s2p 1P1 2p2 1S0 0.224 878 0.225 035 0.224 281
2s2p 3P1 2p2 1S0 0.008 729 0.008 752 0.008 622
2s2p 3P0 2p2 3P1 0.174 519 0.174 739 0.173 824
2s2p 1P1 2p2 3P1 0.022 462 0.022 490 0.023 002
2s2p 3P1 2p2 3P1 0.149 050 0.149 238 0.148 585
2s2p 3P2 2p2 3P1 0.193 450 0.193 727 0.193 452
2s2p 1P1 2p2 3P2 0.159 464 0.159 241 0.159 190
2s2p 3P1 2p2 3P2 0.197 836 0.198 054 0.196 759
2s2p 1P1 2p2 1D2 0.347 082 0.346 968 0.345 137
2s2p 3P1 2p2 1D2 0.042 156 0.042 259 0.042 163
2s2p 3P2 2p2 3P2 0.293 314 0.293 720 0.292 798
2s2p 3P2 2p2 1D2 0.165 847 0.166 061 0.164 952

Coulomb potential. The arguments of that paper are easily
extended to Be-like ions.

Let us conÐrm this conclusion for the transition
For this example, both initial and Ðnal2s2p 3P0È(2p)2 3P1.

states are single-conÐguration states in any coupling
scheme. In Table III, we present a breakdown of the contri-
butions for this transition in Be-like iron. In the Ðrst two
columns, we compare results obtained with a (local)
Coulomb potential in L and V forms. We see that the Ðrst-
order results and second-order results are identical in the
two forms to the 6 digits quoted. (This is true independently
for the Coulomb and Breit interactions.) We do not obtain
precise agreement between L and V forms for the nonlocal
HF potential given in the last two columns of the table.
However, the di†erences between L- and V-forms of the
matrix element, which range between 0.1% and 1% for the
transitions shown in Table I, are smaller the uncertainties in
available experimental data.

2.4. V irtual electronÈpositron pair contributions
In this subsection, we examine the e†ect of electronÈ
positron pair contributions to the second-order reduced
matrix element. These contributions arise from the terms
in the sum over states i and n in eqs (5È7) for which

The contribution of the negative-energy termse
i
\ [mc2.

was discussed by Johnson, Plante and Sapirstein [36] for

Table III. Breakdown of the coupled reduced matrix element
in length (L ) and velocity (V ) forms for the 2s2p 3P0È(2p)2 3P1transition in Fe`22

(a) Coulomb potential (b) DiracÈFock potential

L V L V

Z(1) 0.162 181 8 0.162 181 8 0.173 659 0.185 800
Z(derv) 0.529 166 9 [0.000 018 3 0.053 120 [0.000 006
Z(2) 0.011 593 7 0.540 778 9 0.001 071 0.042 302
B(derv) 0.000 613 3 0.000 000 0 0.000 109 0.000 000
B(2) 0.000 055 5 0.000 668 8 0.000 056 0.000 205
(Z ] B)(tot) 0.703 611 2 0.703 611 2 0.228 015 0.228 301
Q 0.164 909 9 0.164 909 9 0.174 519 0.174 738

He-like ions, where it was shown that they are most impor-
tant for velocity-form matrix elements and do not signiÐ-
cantly modify length-form matrix elements ; we conÐrm that
this conclusion is valid for Be-like ions also. In the Ðnal
column of Table III, we list the velocity-form of the coupled
reduced matrix elements calculated without negative-energy
components. Comparison of results for the velocity-form
matrix element, calculated (a) with and (b) without negative-
energy components shows the large contribution (10È30%)
for transitions with *S \ 1. The negative-energy contribu-
tions from the sum over states leads to very small changes
in the length-form matrix elements but substantial changes
in some of the velocity-form matrix elements, leading to
gauge independence.

3. Results and discussion

We calculate line strengths, oscillator strengths and tran-
sition probabilities for sixteen 2l12l2[L SJ]È2l32l4[L@S@J@]
lines for all ions up to Z \ 30, and for representative high-Z
ions with Z \ 32, 36, 40, 42, 50, 54, 60, 63, 70, 74, 79, 80, 83,
90, 92, 100. The results were obtained in both length and
velocity forms but only length-form results are tabulated.
The theoretical energies used to evaluate oscillator strengths
and transition probabilities are taken from Ref. [38].

In Fig. 1, we illustrate the Z-dependence of the di†erences
between line strengths calculated in length S(L ) and velocity
S(V ) forms. We plot the ratio (S(L ) [ S(V ))/S(L ) in percent.
We separately show L S-allowed transitions in Fig. 1a and
L S-forbidden transitions in Fig. 1b. One can see that the
agreement between length and velocity forms improves with
increasing Z. The ratio (S(L ) [ S(V ))/S(L ) is about 0.1È0.2%
starting from Z \ 30 for all transitions except

It should be noted that the line strengths2s2p 3P1È2p2 1S0 .
for this transition become very small (10~9) for Z [ 50,
which is a factor of 106È104 less than all other transitions.
The largest values for the ratio are for Z \ 4 and 5 where
the ratio is 0.5È1% for allowed transitions and 10È100% for
forbidden transitions. Two peaks are evident in Fig. 1b for
the (S(L ) [ S(V ))/S(L ) ratio of transitions.2s2p 1P1È2p2 3P0
These peaks are explained by reversing the and2s2p 1P1

levels, as we will explain later.2p2 3P0
In Fig. 2 we present the Z-dependence of the di†erence

between velocity-form line strengths Sn, calculated with
both positive- and negative-energy contributions, and Sp,
calculated with positive-energy components only. We plot
the ratio (Sn [ Sp)/Sn in percent. The 16 transitions are
again divided into L S-allowed transitions shown in Fig. 2a
and L S-forbidden transitions shown in Fig. 2b. Comparing
Fig. 2a with Fig. 1a, one sees that the values of (Sn [ Sp)/Sn
are larger than the values of (S(L ) [ S(V ))/S(L ) by a factor of
10 or more for Z [ 20. The contributions of the negative-
energy components are much larger for transition as seen in
Fig. 2b, especially for small Z. The velocity-form line
strength for the transition changes by a2s2 1S0È2s2p 1P1
factor of 30 for Z \ 5 and in by a factor of 2 for Z \ 6.
These changes can be understood by the very large
negative-energy contributions to the Breit terms B(HF),
B(RPA), and B(corr). The values of these terms change by a
factor of two when the negative-energy components are
included. This inÑuence of negative-energy components
gives us a key to understanding the large disagreement
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Fig. 1. Z-dependence of the ratio (S(L ) [ S(V )/S(L ) in %, where line
strengths S are calculated in length S(L ) and velocity S(V ) forms. (a)-
allowed transitions, (b) forbidden in L S-coupling scheme transitions.

between length- and velocity-form line strengths obtained
using MCDF found in [30, 31, 34, 35].

In Table IV, we list the values of line strengths S, calcu-
lated in length form. These values are given for Z \ 4, 10,
20, 40, 60, 80, and 100. We can see from this table, that

Fig. 2. Z-dependence of the ratio (Sn [ Sp)/Sn in %, where S-values are
calculated in velocity form, with-Sn and without-Sp negative-energy com-
ponents. (a)-allowed transitions, (b) forbidden in L S-coupling scheme tran-
sitions.

the three L S forbidden transitions 2s2p 1P1È2p2 3P0 ,
and are also forbidden2s2p 3P1È2p2 1S0 , 2s2p 3P1È2p2 1D2

transitions in jj coupling. The reduced dipole matrix ele-
ments Q for these three transitions vanish when the
electronÈelectron interaction is omitted. We can see that the

Table IV. L ine strengths S in (au) as functions of Z

[L S designation] Z \ 10 Z \ 20 Z \ 40 Z \ 60 Z \ 80 Z \ 100 [ jj designation]

2s2 1S0 [2s2p 1P1 5.51 ([1) 1.15 ([1) 2.54 ([2) 1.00 ([2) 5.11 ([3) 2.88 ([3) 2s2s [0] [2s2p3@2 [1]
2s2 1S0 [2s2p 3P1 1.14 ([5) 4.12 ([4) 3.12 ([3) 2.52 ([3) 1.48 ([3) 7.99 ([4) 2s2s [0] [2s2p1@2 [1]
2s2p 1P1 [2p2 3P0 2.62 ([5) 6.16 ([4) 8.72 ([4) 2.36 ([4) 7.97 ([5) 3.37 ([5) 2s2p3@2 [1] [2p1@22p1@2 [0]
2s2p 3P1 [2p2 3P0 2.68 ([1) 5.40 ([2) 1.31 ([2) 5.50 ([3) 2.61 ([3) 1.28 ([3) 2s2p1@2 [1] [2p1@22p1@2 [0]
2s2p 1P1 [2p2 1S0 4.90 ([1) 9.56 ([2) 1.63 ([2) 5.62 ([3) 2.71 ([3) 1.49 ([3) 2s2p3@2 [1] [2p3@22p3@2 [0]
2s2p 3P1 [2p2 1S0 2.75 ([6) 4.92 ([5) 1.15 ([5) 5.78 ([8) 1.82 ([9) 1.14 ([9) 2s2p1@2 [1] [2p3@22p3@2 [0]
2s2p 3P0 [2p2 3P1 2.69 ([1) 5.41 ([2) 1.20 ([2) 4.98 ([3) 2.57 ([3) 1.45 ([3) 2s2p1@2 [0] [2p1@22p3@2 [1]
2s2p 1P1 [2p2 3P1 5.39 ([6) 1.83 ([4) 1.19 ([3) 8.78 ([4) 4.83 ([4) 2.52 ([4) 2s2p3@2 [1] [2p1@22p3@2 [1]
2s2p 3P1 [2p2 3P1 2.01 ([1) 4.03 ([2) 7.71 ([3) 2.74 ([3) 1.34 ([3) 7.40 ([4) 2s2p1@2 [1] [2p1@22p3@2 [1]
2s2p 3P2 [2p2 3P1 3.35 ([1) 6.70 ([2) 1.44 ([2) 5.64 ([3) 2.68 ([3) 1.33 ([3) 2s2p3@2 [2] [2p1@22p3@2 [1]
2s2p 1P1 [2p2 3P2 2.92 ([4) 1.03 ([2) 1.84 ([2) 6.37 ([3) 2.83 ([3) 1.37 ([3) 2s2p3@2 [1] [2p1@22p3@2 [2]
2s2p 3P1 [2p2 3P2 3.36 ([1) 6.82 ([2) 2.08 ([2) 1.11 ([2) 6.16 ([3) 3.56 ([3) 2s2p1@2 [1] [2p1@22p3@2 [2]
2s2p 1P1 [2p2 1D2 1.25 ( 0) 2.51 ([1) 3.39 ([2) 1.28 ([2) 6.47 ([3) 3.61 ([3) 2s2p3@2 [1] [2p3@22p3@2 [2]
2s2p 3P1 [2p2 1D2 1.43 ([5) 6.42 ([4) 5.74 ([4) 3.17 ([5) 2.96 ([6) 4.26 ([7) 2s2p1@2 [1] [2p3@22p3@2 [2]
2s2p 3P2 [2p2 3P2 1.01 ( 0) 1.91 ([1) 1.93 ([2) 6.13 ([3) 2.77 ([3) 1.36 ([3) 2s2p3@2 [2] [2p1@22p3@2 [2]
2s2p 3P2 [2p2 1D2 3.54 ([4) 1.13 ([2) 2.52 ([2) 1.19 ([2) 6.33 ([3) 3.60 ([3) 2s2p3@2 [2] [2p3@22p3@2 [2]
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line strengths for these three transitions 2s2 1S0È2s2p 3P1,
and2s2p 1P1È2p2 3P1, 2s2p 1P1È2p2 3P2 , 2s2p 3P2È2p2 1D2

are allowed transitions in the jj scheme. The line strengths
for these transitions become comparable to those for L S-
allowed transitions for Z P 36.

In Table V, we compare our results for the lifetimes of
upper levels in Fe`22 with the experimental results of
Bauchet et al. [40]. We also present wavelengths for one of
the transitions which contribute in the lifetime of the upper
level. For example, there are three radiative channels for the
E1 decay of the state :2p2 3P2 2p2 3P2 ] 2s2p 3P2 ,

There is good2p2 3P2 ] 2s2p 3P1, 2p2 3P2 ] 2s2p 1P1.
agreement between theoretical and experimental lifetimes.
Lifetimes of three levels that were not measured in [40] :

and are also given in the table.2p2 3P0 , 2p2 3P1, 2s2p 3P1
In Table VI, we present the transition probabilities A for

three lines : and2s2 1S0È2s2p 1P1, 2s2p 1P1È2p2 1S0 ,
for all ions up to Z \ 30, and for repre-2s2p 1P1È2p2 1D2

sentative high-Z ions. The A-values for these three LS-
allowed transitions are given in the length form. We
compare our theoretical results with available experimental
data [40È50]. The experimental A-values for the

resonance and intercombination lines2s2 1S0È2s2p 1,3P1
were critically selected by Curtis and Ellis [41], and we use
their data for comparison with our calculations. We take
the experimental A-values for the other two lines from
papers published in the 26 year interval 1969È1995. These
experimental results included ions with Z O 17 and three
high-Z ions with Z \ 26, 36, and 54. We Ðnd good agree-
ment between the theoretical and experimental results
except for some low-Z data. It should be noted that the
theoretical A-values for the line would2s2 1S0È2s2p 1P1
increase by 37% for Z \ 4, 15% for Z \ 5, 8% for Z \ 6,
and 5% for Z \ 7 if the theoretical energies were replaced
by experimental ones. The recalculated values are given in
Table VII. In this table, we compared our results with recent
theoretical calculations given by Fleming et al. [19]. In this
paper extensive conÐgurationÈinteraction calculations was
performed to obtain oscillator strengths for only one line

for seven ions.2s2 1S0È2s2p 1P1
In Table VIII, we compare our results for the lifetimes of

upper levels of ions Z O 17 with2p2[ 3P0 , 3P1, 3P2]
experimental results from [44È47, 50, 52È54]. The A-values
for the six L S allowed transitions 2s2p 3P1È2p2 3P0 ,
2s2p 3P0È2p2 3P1, 2s2p 3P1È2p2 3P1, 2s2p 3P2È2p2 3P1,

and are used to calcu-2s2p 3P1È2p2 3P2 , 2s2p 3P2È2p2 3P2
late the lifetimes of and levels.2p2 3P0 , 2p2 3P1, 2p2 3P2
There is no large di†erence in A-values for di†erent J in the

Table V. W avelengths and lifetimes for upper level for
Fe`22. Experimental values are from [40]

j in Ó q in ps

Transition Theory Expt. Theory Expt.

2s2p 3P2È2p2 3P2 166.76 167 76.2 79 ^ 8
2s2p 1P1È2p2 1S0 149.28 149 32.3 34 ^ 5
2s2p 1P1È2p2 1D2 221.32 221 108 100 ^ 8
2s2 1S0È2s2p 1P1 132.98 133 52.7 51 ^ 5
2s2 1S0È2s2p 3P1 263.78 22730
2s2p 3P1È2p2 3P0 173.35 83.4
2s2p 3P0È2p2 3P1 147.34 67.4

interval Z O 17 so we did not specify J for the experimental
lifetimes. Our theoretical A-values agree with experimental
results for B` [47], C2` [52], Si10` [46], P11` [44], and
Cl13` [50] but disagree for O4` [54], and F5` [45]. No
error estimates were given for N3` [53]. Our results are
obtained using a single method for all Z and are expected to
improve in accuracy for high Z. As a result, the agreement
between theoretical and experimental data for small Z
(Z \ 5 and 6) allows us to infer that results for high Z are
also reliable. We also obtain agreement between theoretical
and experimental data for Z \ 14, 15, 17. We conclude that
experimental data for N3` [53], O4` [54], and F5` [45]
are not accurate.

The Z-dependence of oscillator strengths for the
six tripletÈtriplet transitions 2s2p 3P1È2p2 3P0 ,
2s2p 3P0È2p2 3P1, 2s2p 3P1È2p2 3P1, 2s2p 3P2È2p2 3P1,

and are illustrated on2s2p 3P1È2p2 3P2 , 2s2p 3P2È2p2 3P2
Fig. 3. Systematics of atomic oscillator strengths were inves-
tigated very early [20, 55, 56]. Such studies are useful for
judging the reliability and accuracy of experimental data
[57, 58, 41]. The present work demonstrates that oscillator
strengths decrease as 1/Z for allowed 2sÈ2p transitions for
ions with Z \ 36. We can see from eqs (13È15) that the Z-
dependence of the reduced matrix element Q(1`2) are rather
complicated and include terms proportional to 1/Z and
(aZ)2. Consequently, the reduced matrix elements Q(1`2)
decrease more rapidly with Z than 1/Z : by a factor of 14
from Z \ 4 to Z \ 32 then increases by a factor of 4 from
Z \ 32 to Z \ 100 for transitions. It2s2p 3P0È2p2 3P1
should be noted that both initial and Ðnal states of this
transition are single conÐguration states so there is no inÑu-
ence of intermediate coupling coefficients for this matrix
element. The same situation is also true for the

transition where the oscillator strength2s2p 3P2È2p2 3P1
decreases by a factor of 16 from Z \ 4 to Z \ 32 and by a
factor of 4 from Z \ 32 to Z \ 100. The behavior of f-values
for these two transitions is completely di†erent for Z [ 32
as shown in Fig. 3. This di†erence is explained by di†erent
behavior of transition energies for the two transitions. The
Z-dependence of the energy in Be-like ions was investigated
in [32] as shown in Fig. 3. This di†erence is explained by

Fig. 3. Oscillator strengths of six L S-allowed lines as2s2p 3P
J
È2p2 3P

J{
functions of Z.
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Table VI. T ransition probabilities (A in sec~1) calculated in length and velocity(A
L
) (A

V
)

forms, compared with experimental results for and2s2 1S0È2s2p 1P1, 2s2p 1P1È2p2 1S0transitions as function of Z2s2p 1P1È2p2 1D2
2s2 1S0È2s2p 1P1 2s2p 1P1È2p2 1S0 2s2p 1P1È2p2 1D2

Z AL AV AL AV AL AV
4 2.83 [8] 2.81 [8] 4.34 [8] 4.36 [8] 2.27 [6] 2.05 [6]

5.4 ^ 0.2 [8]a
5 8.20 [8] 8.17 [8] 1.14 [9] 1.14 [9] 5.23 [7] 5.08 [7]

1.2 ^ 0.1 [9]a 1.2 ^ 0.1 [9]g 6.4 ^ 0.3 [7]h
6 1.38 [9] 1.38 [9] 1.96 [9] 1.97 [9] 1.34 [8] 1.32 [8]

1.8 ^ 0.1 [9]a 2.0 ^ 0.3 [9]b 1.39 ^ 0.04 [9]b
7 1.94 [9] 1.94 [9] 2.84 [9] 2.85 [9] 2.29 [8] 2.26 [8]

2.4 ^ 0.1 [9]a 2.9 ^ 0.2 [9]c 2.4 ^ 0.2 [8]c
8 2.50 [9] 2.50 [9] 3.75 [9] 3.76 [9] 3.31 [8] 3.27 [8]

3.0 ^ 0.2 [9]a 3.4 ^ 0.2 [9]c 3.4 ^ 0.2 [8]c
9 3.06 [9] 3.07 [9] 4.68 [9] 4.69 [9] 4.38 [8] 4.35 [8]

3.2 ^ 0.3 [9]a 4.8 ^ 0.5 [9]e 4.0 ^ 0.2 [8]e
10 3.63 [9] 3.64 [9] 5.62 [9] 5.64 [9] 5.50 [8] 5.46 [8]

4.3 ^ 0.6 [9]a
11 4.21 [9] 4.22 [9] 6.59 [9] 6.61 [9] 6.67 [8] 6.63 [8]
12 4.80 [9] 4.82 [9] 7.59 [9] 7.60 [9] 7.90 [8] 7.87 [8]

5.3 ^ 0.4 [9]a 7.4 ^ 0.7 [9]d 8.2 ^ 0.6 [8]d
13 5.42 [9] 5.44 [9] 8.61 [9] 8.63 [9] 9.21 [8] 9.18 [8]

5.2 ^ 0.4 [9]a 8.9 ^ 0.8 [9]d 9.3 ^ 0.5 [8]d
14 6.06 [9] 6.08 [9] 9.68 [9] 9.70 [9] 1.06 [9] 1.06 [9]

6.7 ^ 0.5 [9]a 1.0 ^ 0.1 [10]f 1.1 ^ 0.1 [9]f
15 6.74 [9] 6.76 [9] 1.08 [10] 1.08 [10] 1.21 [9] 1.21 [9] [5]

7.1 ^ 0.4 [9]a 1.1 ^ 0.1 [10]d 1.2 ^ 0.1 [9]d
16 7.45 [9] 7.47 [9] 1.20 [10] 1.20 [10] 1.38 [9] 1.37 [9]

7.7 ^ 0.8 [9]a 1.23 ^ 0.04 [10]d 1.4 ^ 0.1 [9]d
17 8.21 [9] 8.23 [9] 1.32 [10] 1.32 [10] 1.56 [9] 1.56 [9]

7.1 ^ 0.4 [9]a 1.2 ^ 0.1 [10]k 1.5 ^ 0.1 [10]k
18 9.02 [9] 9.04 [9] 1.45 [10] 1.46 [10] 1.76 [9] 1.75 [9]
19 9.89 [9] 9.92 [9] 1.60 [10] 1.60 [10] 1.98 [9] 1.98 [9]
20 1.08 [10] 1.09 [10] 1.75 [10] 1.75 [10] 2.23 [9] 2.22 [9]
21 1.19 [10] 1.19 [10] 1.92 [10] 1.92 [10] 2.50 [9] 2.50 [9]
22 1.30 [10] 1.30 [10] 2.10 [10] 2.11 [10] 2.81 [9] 2.80 [9]
23 1.43 [10] 1.43 [10] 2.31 [10] 2.31 [10] 3.15 [9] 3.15 [9]
24 1.57 [10] 1.57 [10] 2.54 [10] 2.54 [10] 3.54 [9] 3.54 [9]
25 1.72 [10] 1.73 [10] 2.79 [10] 2.80 [10] 3.99 [9] 3.99 [9]
26 1.90 [10] 1.90 [10] 3.08 [10] 3.08 [10] 4.50 [9] 4.50 [9]

2.0 ^ 0.2 [10]a 2.9 ^ 0.3 [10]i
27 2.09 [10] 2.10 [10] 3.41 [10] 3.41 [10] 5.10 [9] 5.10 [9]
28 2.31 [10] 2.31 [10] 3.78 [10] 3.78 [10] 5.81 [9] 5.80 [9]
29 2.56 [10] 2.57 [10] 4.20 [10] 4.20 [10] 6.64 [9] 6.64 [9]
30 2.85 [10] 2.85 [10] 4.68 [10] 4.69 [10] 7.63 [9] 7.63 [9]
32 3.54 [10] 3.55 [10] 5.87 [10] 5.88 [10] 1.02 [10] 1.02 [10]
36 5.66 [10] 5.67 [10] 9.54 [10] 9.54 [10] 1.92 [10] 1.92 [10]

5.7 ^ 0.4 [9]a 9.5 ^ 0.8 [10]j
40 9.44 [10] 9.45 [10] 1.61 [11] 1.61 [11] 3.73 [10] 3.73 [10]
42 1.23 [11] 1.24 [11] 2.11 [11] 2.11 [11] 5.22 [10] 5.22 [10]
47 2.48 [11] 2.48 [11] 4.23 [11] 4.23 [11] 1.21 [11] 1.21 [11]
50 3.81 [11] 3.82 [11] 6.49 [11] 6.49 [11] 1.99 [11] 1.99 [11]
54 6.82 [11] 6.82 [11] 1.15 [12] 1.15 [12] 3.83 [11] 3.83 [11]
60 1.63 [12] 1.63 [12] 2.70 [12] 2.70 [12] 9.89 [11] 9.89 [11]
63 2.50 [12] 2.50 [12] 4.12 [12] 4.12 [12] 1.56 [12] 1.56 [12]
70 6.67 [12] 6.68 [12] 1.08 [13] 1.08 [13] 4.39 [12] 4.34 [12]
74 1.15 [13] 1.15 [13] 1.85 [13] 1.85 [13] 7.74 [12] 7.74 [12]
79 2.24 [13] 2.24 [13] 3.57 [13] 3.57 [13] 1.54 [13] 1.54 [13]
80 2.55 [13] 2.55 [13] 4.06 [13] 4.06 [13] 1.76 [13] 1.76 [13]
83 3.77 [13] 3.77 [13] 5.96 [13] 5.96 [13] 2.62 [13] 2.62 [13]
90 9.11 [13] 9.11 [13] 1.43 [14] 1.43 [14] 6.45 [13] 6.45 [13]
92 1.17 [14] 1.17 [14] 1.82 [14] 1.82 [14] 8.28 [13] 8.28 [13]

100 3.07 [14] 3.07 [14] 4.76 [14] 4.76 [14] 2.21 [14] 2.21 [14]

a [40].
b [41].
c [42].
d [43].
e [44].
f [45].
g [46].
h [47].
i [39].
k [48].
k [49].
l [50].
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Table VII. T ransition probabilities (A in 108 s~1) for reso-
nance line calculated in length- and velocity-2s2 1S0È2s2p 1P1forms

Z ALa AVa ALb AVb

5 9.43 9.39 11.9 12.0
6 14.9 14.8 17.6 17.6
7 20.4 20.4 23.0 23.2
8 25.8 25.9 28.6 28.6

10 37.0 37.1 39.7 39.5
12 48.6 48.7 51.3 50.8

a present result with experimental energies.
b [19].

di†erent behavior of transition energies for the two tran-
sitions. The Z-dependence of the energy in Be-like ions was
investigated in [38]. The energy di†erence for 2sÈ2p tran-
sitions is governed by the two leading terms, Z and a2Z3.
The Ðrst of these dominates for small Z and the f-values are
proportional to 1/Z. With increasing Z, the second term
becomes dominant and the f-values become proportional to
Z. We can demonstrate these two behaviors for the f-values
of two transitions : and2s2p 3P0È2p2 3P1 2s2p 3P2È2p2 3P1.
The ratio of f-values for these transitions is about the ratio
of their statistical weights 1 : 5 for 4 O Z O 32. The f-values
of the and transitions2s2p 3P0È2p2 3P1 2s2p 3P2È2p2 3P1
decrease by factors of 7 and 11, respectively, from Z \ 4 to
Z \ 32. With increasing Z, the f-value of the second tran-
sition decreases also by a factor of 4 from Z \ 32 to
Z \ 100, but the f-value of the Ðrst transition becomes
larger by a factor of 4 from Z \ 32 to Z \ 100. This is
caused by the increase of the energy di†erence for the

transition by a factor of 1.4 for Z \ 322s2p 3P0È2p2 3P1
and a factor of 15 for Z \ 100 in comparison with the

transition.2s2p 3P2È2p2 3P1

Table VIII. L ifetimes (q in ps) for upper level as func-2p2 3PJtion of Z

Z 3P0 3P1 3P2 Expt.

4 2437 2437 2436
5 1187 1186 1185 1240 ^ 70a
6 779 778 777 790 ^ 20b
7 580 579 578 650c
8 462 461 459 400 ^ 40d
9 384 383 381 320 ^ 40e

10 328 327 325
11 286 284 282
12 253 251 248
13 227 224 220
14 204 201 197 190 ^ 15f
15 186 182 178 180 ^ 10g
16 170 165 161
17 156 151 147 160 ^ 10h

a [46].
b [51].
c [52].
d [53].
e [44].
f [45].
g [43].
h [49].

Fig. 4. Transition probabilities A for six intermediate coupling lines as
functions of Z.

The Z-dependence of transition probabilities for the
six singletÈtriplet or tripletÈsinglet transitions
2s2p 1P1È2p2 3P0 , 2s2p 3P1È2p2 1S0 , 2s2p 1P1È2p2 3P1,

and2s2p 1P1È2p2 3P2 , 2s2p 3P1È2p2 1D2 , 2s2p 3P2È2p2 1D1
are shown in Fig. 4. The A-values for these transitions
increase by a factor of 10`11 over the interval 4 O Z O 100.
It is known [59] that the ratios of A-values of L S-allowed
and forbidden transitions are proportional to Z6. We can
see the minimum for Z \ 36 for the A-values of the

intercombination transition. This min-2s2p 1P1È2p2 3P0
imum is explained by the decrease of the energy interval
between the and levels. For Z \ 32, 36,2s2p 1P1 2p2 3P0
and 40 the di†erences are equal to 164518 cm~1, 64233
cm~1, and [122283 cm~1, respectively. The changes of sign
means that the upper level is instead of It2s2p 1P1 2p2 3P0 .
should be noted that our comments about L S-allowed and
forbidden transitions refer primarily to ions with Z \ 36.
We can see from Fig. 4, that for Z \ 36, the A-values for the
all transitions except are in the range 1072s2p 1P1È2p2 3P0
s~1È1010 s~1 and are comparable to A-values of allowed
transitions (109 s~1È1010 s~1 for Z \ 36). The L S desig-
nation is meaningful for ions with small Z, but with increas-
ing Z the jj designations become more appropriate.

4. Conclusion

We have presented a systematic second-order relativistic
MBPT study of reduced matrix elements, oscillator
strengths and transition rates for all 16 allowed and for-
bidden 2sÈ2p electric dipole transitions in berylliumlike ions
with nuclear charges ranging from Z \ 4 to 100. The retar-
ded E1 matrix elements include correlation corrections from
Coulomb and Breit interactions. Contributions from virtual
electronÈpositron pairs were also included in the second-
order matrix elements. Both length and velocity forms of the
matrix elements were evaluated, and small di†erences,
caused by the nonlocality of the starting HF potential, were
found between the two forms. Second-order MBPT tran-
sition energies were used to evaluate oscillator strengths and
transition rates. Our theoretical data for allowed transitions
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agrees with experiment within the experimental error bars.
We believe that these results will be helpful in analyzing old
experiments and planning new ones. Additionally, the
matrix elements from the present calculations provide basic
theoretical input for calculations of reduced matrix ele-
ments, oscillator strengths and transition rates in three-
electron boronlike ions.
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