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Abstract

The Generalized Theory (GT) of Stark broadening of Stark broadening of hydrogen lines in plasmas,
published by Ispolatov and Oks (JQSRT 1994; 51:19-9-38) is based on nonperturbative treatment of one
component of the electron "eld. Therefore the GT is intrinsically more accurate than the fully-perturbative,
Standard Theories (ST), such as the theory by Kepple}Griem (Phys Rev 1968; 173:317}25) (KG) and the
theory by Sholin-Demura-Lisitsa (Sov Phys JETP 1973; 37:1057}65) (SDL). The present paper introduces an
Advanced Generalized Theory (AGT), that yields closed-form expressions for the width, shift and coupling of
Stark states. We also present tables of the AGT Stark widths of Lyman and Balmer lines for transitions with
upper levels having principal quantum numbers n416 and for electron densities from N

%
"1013 cm~3 to

N
%
"1020 cm~3. The mathematical simplicity of the AGT results make it possible to gain physical insight

into the important features of the generalized theories that distinguish the AGT/GT from its predecessors.
Empirical choices of important characteristic impact parameters made previously, are shown, using the
insights possible with the AGT, to be inaccurate: (A) In the AGT, the e!ective Weisskopf radius o

W
is

proportional to n2, while SDL had empirically chosen o
W

proportional to n; (B) in the AGT, the e!ective
Weisskopf radius o

W
is de"ned for each Stark component (i.e., dependent on the electric quantum number q),

while KG had empirically chosen a component-independent o
W

; (C) in the AGT the ion-"eld-dependent
upper cuto! o

F
is proportional to 1/n while KG had empirically chosen an expression for o

F
proportional to

1/n2. The AGT shows that in high "elds or high density range, the coupling between the ion and electron
broadenings is signi"cantly stronger than proposed by both the KG and SDL theories. Even in the low "eld
or low density range, where the coupling between the ions and electrons broadening is negligible, the results
of the AGT are more accurate than the results of the Standard Theories. In addition to yielding the e!ective
Weisskopf radius (as noted above), the AGT can evaluate the `strong collision constanta* in distinction to
both the KG and SDL theories, where the choice of this constant is empirical. The comparison of the
tabulated Stark widths with the KG Stark widths indicates that the inaccuracy of the KG width is
signi"cantly increased with the increasing electron density N

%
and upper principal quantum number n.

0022-4073/00/$ - see front matter ( 2000 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 2 2 - 4 0 7 3 ( 9 9 ) 0 0 0 9 5 - 3



However, even for the ¸a line at, e.g., densities 1017 cm~3* where the experimental width is a factor of two
greater than the calculated KG width and the entire di!erence between the two widths was usually attributed
to the ion dynamics* it turns out that the AGT eliminates about one half of this discrepancy indicating that
the ion-dynamical contribution is in reality about a factor of two smaller than it was previously as-
sumed. ( 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The Generalized Theory (GT) of Stark broadening of hydrogen lines in plasmas was developed
by Ispolatov and Oks [1] in 1994. The GT treats non-perturbatively both the ion produced "eld
F and a projection [E(t)]F of the electron produced "eld E(t) onto the vector F. The other two
projections of the electron "eld [E(t)] were treated in a second-order perturbation theory as in the
Standard Theories (ST), such as Kepple}Griem's [2] (KG) and Sholin-Demura-Lisitsa's [3] (SDL).

By treating one component of the electron "eld `exactlya, the GT eliminated the divergence at
small impact parameters, which is intrinsic in the ST. It should be emphasized that the GT reduces
to the ST in the case when both the electron density N

%
and the upper principal quantum number

n are relatively small. However, the inaccuracy of the ST is expected to grow as the electron density
and (or) the upper principal quantum increase(s).

In the GT the angular integrations were performed analytically, as in the ST, and four
integrations remained: two time-integrations, one integration over impact parameters and the "nal
integration over the ion micro"eld F.

The integrands are strongly oscillating functions of all three variables. The numerical di$culties
became the main motivation for the development of a more user-friendly form of the GT: The
Advanced Generalized Theory (AGT).

In the AGT, we performed a 1/s expansion of our broadening functions allowing us to
analytically perform the two time integrations exactly and the integration over impact parameters
piece-wise. We de"ne s as s,X/n for the upper multiplet and s@,X/n@ for the lower multiplet.
Here X is the combination of parabolic quantum numbers that controls the static Stark shift of
each component:

X,nq!n@q@, q"n
1
!n

2
, q@"n@

1
!n@

2
.

In the limit of large upper principal quantum numbers, n<n@, s reduces to q: s+q. So, the
expansion of the broadening functions was performed essentially for large electric quantum
numbers. By comparing our analytical results with the exact numerical integration over impact
parameters, we found that our analytical results have excellent accuracy for s<1 with an accuracy
of about 5% for s"1.

The approach was di!erent for values of s(1, e.g., central unshifted Stark components. In the
large ion "eld region, we derived the AGT results analytically using the steepest descent method
where the result is signi"cantly di!erent from the ST. In the low ion "eld region, the AGT violates
unitarity, as does the ST. So, in this region, we used the same unitarity based approximation as in
the ST (for the central Stark components).

544 J.E. Touma et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 65 (2000) 543}571



After the "nal integration over impact parameters, all the AGT's broadening functions depend
only on one parameter, de"ned as

i"
9
2A

+
m

%
vB

2
nXF (1)

where F is the static ion "eld, + is Plank's constant, m
%
is the electron mass and v is the electron

velocity. Physically, i is the reduced, or renormalized, static ion "eld.

2. Analytical results for the broadening functions

After performing the angular integrations, the GT yields the following for the electron impact
operator:
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Here N
%

is the electron density, o is the impact parameter of the perturbing electron, n is the
principal quantum number, q"n

1
!n

2
is the electric quantum number (expressed via the

parabolic quantum numbers), su$x a refers to the upper multiplet, and su$x b refers to the lower
multiplet.

The "rst term in M2N is the adiabatic contribution to the impact operator and can be integrated
analytically:

P
um

0

du 6uA1!u sin
1
uB"3u2

m
!Cu2

m
cos

1
u
m

#(2u3
m
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m
)sin
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#CiA
1
u
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BD, (3)

where Ci(x) is the integral cosine function.
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The last three terms in M2N in Eq. (2) are the nonadiabatic part of the impact operator. The
upper sign in Eq. (2) corresponds to the nondiagonal elements of the impact operator while the
lower sign corresponds to the diagonal elements. As mentioned above, three integrations remained
even before the "nal integration over the ion micro"eld. The two-time integrations are implicit in
the functions CB

a
, CB

b
and C

C
. The integration over impact parameters is explicit in the de"nition of

the impact operator. The AGT is primarily concerned with obtaining analytical results for the
nonadiabatic contribution to the impact operator to the line pro"le. Dropping the subscripts a and
b and making $ a subscript, the functions CB

a
and CB

b
are given by
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(the latter three functions are the spherical Bessel functions). The variables x
1

and x
2

are the
standard notation of the ST:

x
1
"vt

1
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2
/o. (6)

As for the interference term, we have
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The variables x
1

and x
2

are given by Eq. (6).
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Fig. 1. Comparison of the width function AST
~

(Z) of the Standard Theories with the width function A
~

of the Advanced
Generalized Theory for several values of the parameter

i"
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2A
+

m
%
v
%
B

2
n(nq!n@q@)F.

As in the ST, we break C functions into real and imaginary parts:

C
B,C

(s,>,Z),A
B,C

(s,>,Z)#iB
B,C

(s,>, Z). (11)

Fig. 1 compares the width functions A
~
(Z) of the AGT with A

~
(Z) of the ST. As can be seen, the

AGT results reduces to the ST for large values of the impact parameters. But for small values for
the impact parameters, we see that the two theories di!er drastically. The ST is "nite at Z"0, and
with the subsequent multiplication by the factor of 1/Z and integrating over impact parameters,
this leads to divergence at Z"0. The AGT, on the other hand, is identically zero at Z"0 and that
eliminates the divergence at Z"0 in the subsequent integration over impact parameters (after
multiplying by the factor 1/Z). The behavior of A

~
in the AGT for that region is oscillatory and

dependent on the parameter i.
An important question that remained unanswered in the GT but is now answered in the AGT, is

the following. The GT eliminated the divergence of the electron impact operator at small impact
parameters. The divergence, that was a plague in the ST, was related (but not equivalent) to another
de"ciency of the ST: the electron broadening functions C(o) in the ST, at small impact parameters
o, violated the unitarity of the scattering matrix S(o). In the GT, the divergence was eliminated but
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Fig. 2. Comparison of the shift function BSDL
~

(Z) of the SDL's theory, the shift function BKG
~

(Z),0 of KG' theory with
the shift function B

~
of the Advanced Generalized Theory for several values of the parameter
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it remained unclear, whether or not the functions C(o) in the GT obey the restrictions imposed by
the unitarity of S(o).

In the AGT we have shown that for the overwhelming majority of Stark components of
hydrogen lines, the functions C(o) indeed obey the unitarity restrictions (see Appendix B). This is
the next most important physical advantage of the AGT (and GT) over the ST.

Fig. 2 compares the shift functions B
~

(Z) of the AGT with the corresponding shift functions of
KG and SDL. As can be seen the behaviors of all three functions are very di!erent. KG's choice for
the shift function was identically zero for all values of the impact parameter: BKG

~
,0. As for the

AGT's and SDL's, both functions coincide at large values of the impact parameter while the
behavior is dramatically di!erent at small impact parameter: SDL's is a smooth curve that
increases from zero while that AGT's starts from zero and oscillates at small impact parameters
and those oscillations increase with i.

The next step is to integrate over the impact parameters and is the following:

c
B,C

,P
=

0

C
B,C

dZ
Z

. (12)
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Again, as in the ST, we break the c functions into real and imaginary parts:

c
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(s,>, Z). (13)

In the AGT, due to our expansion in terms of s, we have the imaginary parts of the functions
C

`
and C

C
identically zeros:

B
`
,B

C
,0, (14)

just like in the standard theories. Thus, we will only describe results for the following broadening
functions: a

B,C
and b

~
. Below we present a summary of the "nal analytical results, referring for

details of the derivations to Ref. [4].

2.1. The width function

We have two expressions for the width function a
~

: one for the lateral components denoted as
aL
~

and one for the central components denoted as aC
~
.

Before we introduce the expressions for aL
~

and aC
~

, we present an expression common to both
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where
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2.2. The coupling function

We have two expressions for the coupling function a
`

: one for the lateral components denoted as
aL
`

and one for the central components denoted as aC
`
.

Before we present the expressions for aL
`

and aC
`

, we present an expression common to both:
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2.3. The interference function

The interference function a
C

, is divided up into two terms, an even term and an odd term with
respect to the inversion of the sign of uaa{ubb{. The following two expressions, a%

C
and a0

C
are

common to both the lateral components aL
C

and for the central components aC
C
. The superscript `ea

is to indicate that the function is even with respect to the inversion of the sign of uaa{ubb{ while the
superscript `oa is to indicate that the function is odd with respect to the same inversion.
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The superscripts on the expressions for d are used as follows: d` is used when
sign(uaa{ubb{)"#1 and d~ is used when sign(uaa{ubb{)"!1.
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2.4. The shift function

We compute the shift function b
~

only for the lateral components. For the central components,
b
~

enters the impact broadening operator in combination with qn2 or q@n@2 which are zero for the
central components. Therefore, we do not need to compute b
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for the central components, and

thus we drop the subscript ¸ from the following expressions for b
~

calculated for the lateral
components.
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Here K
0
(Z ) and I

1
(Z) are the modi"ed Bessel functions of two di!erent kinds,
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Fig. 3. Applicability range of the AGT. For a given temperature, say 1 eV, the AGT is not valid in the region below the
corresponding dash-dotted curve. The solid line acts as a boundary above which the static splitting is much smaller than
the plasma electron frequency. The top most line (dashed) is the well known Inglis-Teller limit above which spectral lines
merge into a quasi-continuum. In the band between a particular dash-dotted line and the solid line, we expect a dramatic
di!erence between the AGT and the ST. In the band between the solid curve and the dashed curve, the di!erence between
the AGT and the ST should be less signi"cant, but the AGT is still more accurate than the ST.
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Now we discuss the applicability range of the AGT. Fig. 3 shows the electron density N
%
plotted

against the upper principal quantum number n for Balmer lines. The lower three curves (dash-
dotted): de"ned by Eq. (15), give a lower limit on the electron density: for a given temperature, say
1 eV, the AGT is not valid in the region below this line since the ions in that region are no longer
quasi-static:
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The solid line is the boundary above which the static splitting is much smaller than the plasma
electron frequency. The curve is described by the following equation:

N
%
"1/16pa3

0
n8. (16)
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The top most line (dashed) is the well known Inglis}Teller limit above which spectral lines merge
into a quasi-continuum. It is described by

N.!9
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"

1
(12.66a2

0
n5)3@2

"

1.50]1023 cm~3

n15@2
. (17)

In the band between a particular dash-dotted line and the solid line, we expect a dramatic
di!erence between the AGT and the ST. The di!erence between the two should become greater as
we increase the electron density (as we get closer to the solid curve). In the band between the solid
curve and the dashed curve, the di!erence between the AGT and the ST should be less signi"cant.

3. Tables of Stark width and the physics behind the di4erences between the AGT and the ST width

We used the AGT to calculate Stark widths for the Lyman and Balmer lines up to the principal
quantum number n"16 for broad ranges of electron densities N

%
"1013}1020 cm~3 and temper-

atures ¹"(5}40)]103 K. The tables are presented in Appendix C. The "rst column is ¹ in units of
103 K. The second column is P"log[N

%
(cm3)]. The next column is the FWHM by the AGT in

a-units (As /CGSE). For the lines which the FWHM by the KG code is available, it is presented in
the last column in the last column in a-units. We now compare, where applicable, the AGT with the
KG widths.

For some lines, KG overestimates the width as compared to the AGT width. While for lines
without unshifted components, KG overestimates the width by a relatively small percentage (e.g.
by up to 7% for Hb and ¸b), the overestimation signi"cantly increases for the Ha line which has
unshifted components. For this line, which is the most intensive hydrogen line in the visible range
and thus the most important for practical applications, KG overestimates the width by up to 46%.

For the majority of lines, KG underestimates the width compared to the AGT width. Even for
lines without the unshifted components, the underestimation is quite signi"cant (e.g. by up to
20}21% for Hd and ¸d ). But for the lines with unshifted components, the underestimation is
extremely dramatic. Indeed, KG unerestimates the width of ¸c by up to 2.8 times, the width of ¸a by
up to 2.5 times, and the width of Hc by up to 2 times !

We emphasize that the above dramatic or signi"cant di!erences would still remain dramatic or
signi"cant even after the allowance for Doppler broadening. Therefore it should be of a great
practical importance to use the AGT widths rather than the KG widths.

For ¸a we can also compare the results of both theories with Grutzmacher's and Wende's
experiment [5]. Table 16 shows a comparison between the Stark width obtained by the AGT, KG
and the experiment. For the lowest density point N

%
"1017 cm~3, the discrepancy of the KG's and

AGT's width with the experiment's are about 78% and 55%, respectively. When the initial density
is doubled, the discrepancy of the KG's is reduced to about 68% while KG's reduces to 43%. When
the initial density is tripled, the discrepancy of the KG's is reduced to about 64% while the AGT's
was dramatically reduced to about 35%. Even when the initial density is quadruple, the discrep-
ancy of KG's code is about 62% while the AGT's is just above 31%.

The conventional explanation of the discrepancy between the KG results and experiment was
that it was primarily due to the ion dynamics, which was not included in KG code. But as we just
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saw, much of this discrepancy was eliminated by a more accurate treatment of the electron "eld in
the AGT without the introduction of ion dynamics. Another conclusion from the same is the
following. Those broadening theories that `marrieda some modeling of the ion dynamics with the
conventional (a-la KG) treatment of electrons and obtained an `agreementa with Grutzmacher's
and Wende's experiment, had signi"cantly overestimated the actual ion-dynamical contribution.

For most lines, the trend is not so clear. For a particular line, say, KG overestimates the width
for some plasma parameters while for another set of plasma parameters, they underestimate the
width of the same line relative to the AGT.

These features could be explained by comparing the assumptions and empirical choices that
were made by KG with the corresponding, exact-analytically derived, physical characteristics and
parameters obtained by the AGT. The main reason that KG code overestimates the width for some
spectral lines is presented in the next paragraph.

Kepple}Griem empirically chosen the lower cuto! for the impact parameters (also known as the
Weisskopf radius) as

o
W
"

(n2!n@2)
m

%
v
%

+

and used this same value for all Stark components of a spectral line, whereas in the AGT, the
e!ective o

W
turns out to be intrinsically individual for each Stark component

oAGT
W

"3X+/m
%
v
%
.

In distinction to the KG, the AGT does not introduce any empirical lower cuto!. In the AGT
results, that are rigorously derived from "rst principles, we can identify, what plays the role of the
Weisskopf radius. That is what the above expression represents. Our calculations (Appendix A)
show that the value of the e!ective oAGT

W
"3X+/(m

%
v
%
) averaged over all Stark component of

a hydrogen line is:

f 1.5 times greater than the KG semi-empirical choice of oKG
W

"(n2!n@2)+/(m
%
v
%
) for all hydrogen

lines that do not have the central components (such as ¸b, ¸d, Hb, Hd, 2),
f approximately 1.5 times greater than the KG semi-empirical choice of oKG

W
"(n2!n@2)+/(m

%
v
%
)

for most hydrogen lines that do have the central components.

It is this underestimation by KG of the e!ective Weisskopf radius translates into their overestima-
tion of the width of lines.

For some lines, the following factors enter the game and result in the underestimation of the
width by KG.

1. Kepple}Griem had empirically chosen the ion-"eld-dependent upper cuto! o
.!9

as being
proportional to 1/n2

o
.!9

+

1
5

v+
n2e2a

0

N~2@3
%

.
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Table 1
Ratio of the Weisskopf radii of the AGT and the ST

Line R Line R

¸a 1.0400 Ha 1.1159
¸c 1.5447 Hc 1.5246
¸
6

1.5565 H
7

1.5345
¸
8

1.5509 H
9

1.5314
¸
10

1.5445 H
11

1.5278
¸
12

1.5392 H
13

1.5246
¸
14

1.5349 H
15

1.5220
¸
16

1.5313 H
17

1.5198

However, from selection rules for the parabolic quantization, o
.!9

should be proportional to 1/n
(as in the SDL and the AGT)

o
.!9

+

v+
6.3ne2a

0

N~2@3
%

.

2. In the KG and SDL, the dependence on the ion "eld F entered only the argument of the
logarithm (which means a very weak coupling between the ion and electron broadening). In
distinction to this, the AGT proves rigorously that the coupling between the ion and electron
broadening, which is e!ective at the high n and/or high N

%
ranges, is signi"cantly stronger than

it was empirically introduced by both KG and SDL. The strong coupling results in a much
slower fallo! of the width (a

~
) and shift (b

~
) functions at large F, than in the KG and SDL.

bAGT
~

"aAGT
~

"

3p2

64i
at FA

2e
nXA

m
%
v
%

+ B
2
,

i"
1
2eA

+
m

%
v
%
B

2
nXF,

bST
~
"aST

~
"0 at FA

2e
nXA

m
%
v
%

+ B
2
.

3. Kepple}Griem equates the width (a
~

) and coupling (a
`

) functions, whereas in the AGT, the
width function is always greater than the coupling function. The coupling function acts to
reduce the width of the line. Therefore, KG, by setting a

~
,a

`
(what is incorrect), obtained

a smaller width than seen by the AGT.
4. In both the KG and SDL, the choice of the `strong collision constanta was empirical and

ambiguous.

a
~
+0.25#lnA

o
D

o
W
B KG,

a
~
+0.50#lnA

o
D

o
W
B SDL.
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Table 2
Stark FWHM of Lyman alpha (1}2)

¹ P AGT KG

5 16 2.14E!04 1.66E!04
5 17 3.74E!04 2.66E!04
5 18 5.74E!04 3.42E!04
5 19 7.40E!04 2.94E!04

10 16 1.65E!04 1.33E!04
10 17 2.96E!04 2.26E!04
10 18 5.01E!04 3.44E!04
10 19 7.28E!04 3.88E!04
10 20 8.05E!04

20 16 1.29E!04 1.11E!04
20 17 2.35E!04 1.97E!04
20 18 4.17E!04 3.22E!04
20 19 6.64E!04 4.42E!04
20 20 8.98E!04 4.54E!04

30 16 1.12E!04 1.01E!04
30 17 2.04E!04 1.78E!04
30 18 3.67E!04 3.02E!04
30 19 6.14E!04 4.48E!04
30 20 8.56E!04 5.18E!04

40 16 1.00E!04 9.40E!05
40 17 1.85E!04 1.64E!04
40 18 3.35E!04 2.88E!04
40 19 5.77E!04 4.46E!04
40 20 8.41E!04 5.54E!04

The AGT brings up a more accurate value of this `constanta

a
~
+1.063#lnA

o
D

oAGT
W
B.

4. Conclusions

We developed a computationally robust version of the Generalized Theory (GT) called the
Advanced Generalized Theory (AGT). In distinction to the Standard Theories (ST), where the
electrons were treated as the perturbation, both the GT and the AGT take into account exactly,
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Table 3
Stark FWHM of Lyman beta (1}3)

¹ P AGT KG

5 15 4.09E!03 4.20E!03
5 16 4.20E!03 4.28E!03
5 17 4.20E!03 4.28E!03
5 18 3.72E!03 3.96E!03
5 19 2.50E!03

10 15 4.20E!03 4.32E!03
10 16 4.37E!03 4.46E!03
10 17 4.54E!03 4.60E!03
10 18 4.47E!03 4.48E!03
10 19 3.70E!03

20 15 4.28E!03 4.42E!03
20 16 4.44E!03 4.56E!03
20 17 4.69E!03 4.78E!03
20 18 4.92E!03 4.92E!03
20 19 4.68E!03 4.70E!03

30 15 4.29E!03 4.44E!03
30 16 4.46E!03 4.60E!03
30 17 4.74E!03 4.84E!06
30 18 5.06E!03 5.12E!03
30 19 5.10E!03 5.12E!03

40 15 4.29E!03 4.46E!03
40 16 4.46E!03 4.62E!03
40 17 4.74E!03 4.88E!03
40 18 5.11E!03 5.22E!03
40 19 5.31E!03 5.38E!03

nonperturbatively one component of the electron "eld. This is equivalent to the partial summation
of the all-order-diagrams in the quantum broadening theory.

Therefore, both the GT and the AGT are intrinsically more accurate than the ST. That is why
one of the primary purposes of this paper was a detailed study of physical consequences, resulting
from the di!erent approaches of the AGT and of the ST, as well as the inaccuracies and incorrect
empirical choices of the ST, by benchmarking the ST to the AGT.

If we would have to select just one, the most distinctive di!erence in physical consequences of the
AGT and the ST, this would be the strong coupling between the electron and ion broadenings. In
the ST, the coupling was very weak: indeed the ion "eld F entered the electron impact operator
only in the argument of a logarithm. In the AGT, the electron impact operator, being entangled
with the ion "eld in a much more complicated fashion, demonstrates a strong dependence on the
ion "eld. This is most clearly manifested in the large-F region, where the ST predicts the 100%
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Table 4
Stark FWHM of Lyman Gamma (1}4)

¹ P AGT KG

5 14 1.06E!03 8.32E!04
5 15 4.63E!03 1.64E!02
5 16 6.34E!03 4.52E!03
5 17 6.56E!03 4.98E!03
5 18 5.37E!03

10 14 7.69E!04 6.44E!04
10 15 1.95E!03 1.23E!03
10 16 6.20E!03 3.28E!03
10 17 7.23E!03 5.62E!03
10 18 6.87E!03 5.36E!03

20 14 5.74E!04 5.08E!04
20 15 1.22E!03 9.54E!04
20 16 5.50E!03 1.98E!03
20 17 7.40E!03 5.68E!03
20 18 8.02E!03 6.44E!03

30 14 4.86E!04 4.50E!04
30 15 9.93E!04 8.42E!04
30 16 4.49E!03 1.67E!02
30 17 7.27E!03 5.44E!03
30 18 8.34E!03 6.90E!03

40 14 4.34E!04 4.14E!04
40 15 8.71E!04 7.68E!04
40 16 2.46E!03 1.49E!03
40 17 7.10E!03 5.12E!03
40 18 8.45E!03 7.16E!03

depression (disappearance) of the electron impact broadening by the ion "eld F above some critical
"eld F

#3
. In distinction, the AGT shows that even at F'F

#3
, there remains a signi"cant electron

impact broadening, which diminishes in a relatively slow way (proportional to 1/F) with the further
increase of F.

Next, an important question that remained unanswered in the GT but we answered in the AGT,
is the following. The GT eliminated the divergence of the electron impact operator at small impact
parameters. The divergence, that was a plague in the ST, was related (but not equivalent) to another
de"ciency of the ST: the electron broadening functions C(o) in the ST, at small impact parameters
o, violated the unitarity of the scattering matrix S(o). In the GT, the divergence was eliminated but
it remained unclear, whether or not the functions C(o) in the GT obey the restrictions imposed by
the unitarity of S(o).
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Table 5
Stark FWHM of Lyman delta (1}5)

¹ P AGT KG

5 13 1.08E!02
5 14 1.19E!02 1.20E!02
5 15 1.32E!02 1.30E!02
5 16 1.42E!02 1.32E!02
5 17 1.50E!02 1.19E!02

10 13 1.05E!02
10 14 1.17E!02 1.19E!02
10 15 1.30E!02 1.31E!02
10 16 1.45E!02 1.39E!02
10 17 1.53E!02 1.37E!02

20 13 1.02E!02
20 14 1.14E!02 1.02E!02
20 15 1.27E!02 1.29E!02
20 16 1.44E!02 1.42E!02
20 17 1.60E!02 1.49E!02

30 13 9.99E!03
30 14 1.12E!02 1.13E!02
30 15 1.26E!02 1.27E!02
30 16 1.42E!02 1.42E!02
30 17 1.61E!02 1.56E!02

40 13 9.85E!03
40 14 1.10E!02 1.13E!02
40 15 1.24E!02 1.23E!02
40 16 1.40E!02 1.42E!02
40 17 1.60E!02 1.56E!02

In the AGT we have shown that for the overwhelming majority of Stark components of
hydrogen lines, the functions C(o) indeed obey the unitarity restrictions (see Appendix B). This is
another important physical advantage of the AGT (and GT) over the ST.

Based on our closed-form expressions for the width-, shift-, and coupling-broadening functions,
we have calculated Stark pro"les of the Lyman and Balmer lines up to the upper principal
quantum number n"16 for electron densities from N

%
"1013 cm~3 to N

%
"1020 cm~3. We have

presented here the most comprehensive tables of Stark widths for all those Lyman and Balmer
lines, based on the quasistatic approximation for ions and the impact approximation for electrons.

The mathematical simplicity of the AGT results has made it possible to gain a much
deeper physical insight into the following important features of the generalized theories that
distinguish the AGT/GT from its predecessors and ensure its superior accuracy. In addition to the
much stronger coupling (than in the ST), as discussed above, other distinctive features are the
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Table 6
AGT Stark width of ¸

6
}¸

10

¹ P ¸
6

¸
7

¸
8

¸
9

¸
10

5 13 1.22E!02 2.48E!02 3.18E!02 4.70E!02 5.74E!02
5 14 1.64E!02 2.80E!02 3.66E!02 5.34E!02 6.55E!02
5 15 1.90E!02 3.13E!02 4.04E!02 6.50E!02 7.21E!02
5 16 1.99E!02 3.60E!02 4.07E!02

10 13 2.77E!03 2.40E!02 2.99E!02 4.55E!02 5.52E!02
10 14 1.53E!02 2.73E!02 3.56E!02 5.20E!02 6.39E!02
10 15 1.88E!02 3.11E!02 4.06E!02 6.46E!02 7.33E!02
10 16 2.11E!02 3.42E!02 4.43E!02

20 13 1.65E!03 2.31E!02 2.72E!02 4.36E!02 5.25E!02
20 14 1.35E!02 2.63E!02 3.41E!02 4.99E!02 6.14E!02
20 15 1.80E!02 3.02E!02 3.98E!02 6.28E!02 7.16E!02
20 16 2.12E!02 4.06E!02 4.53E!02

30 13 1.33E!03 2.25E!02 2.51E!02 4.25E!02 5.06E!02
30 14 1.21E!02 2.56E!02 3.29E!02 4.87E!02 5.96E!02
30 15 1.73E!02 2.96E!02 3.90E!02 5.65E!02 7.01E!02
30 16 2.09E!02 3.42E!02 4.50E!02

40 13 1.16E!03 2.20E!02 2.33E!02 4.18E!02 4.91E!02
40 14 1.09E!02 2.51E!02 3.19E!02 4.77E!02 5.83E!02
40 15 1.67E!02 2.90E!02 3.82E!02 5.55E!02 6.88E!02
40 16 2.06E!02 3.37E!02 4.45E!02

following. Empirical choices of important characteristic impact parameters are now determined
more precisely:

1. In the AGT, the e!ective Weisskopf radius o
W

is proportional to n2, while SDL had empirically
chosen o

W
proportional to n.

2. In the AGT, the e!ective Weisskopf radius o
W

turns depends on each Stark component (i.e., it is
dependent on q), while in KG it was not.

3. In the AGT, the ion-"eld-dependent upper cuto! o
F

is proportional to 1/n, as follows from the
selectrion rules for the parabolic quantization, while KG had empirically chosen an expression
for o

F
proportional to 1/n2.

Even in the low "eld and/or density range, where the coupling between the ions and electrons
broadening is negligible, the results of the AGT should be more accurate than the results of the
Standard Theories. The Weisskopf radius and the `strong collision constanta are derived consis-
tently in the AGT in distinction to both KG and SDL.
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Table 7
AGT Stark width of ¸

11
}¸

13

¹ P ¸
11

¸
12

¸
13

5 13 7.78E!02 9.22E!02 1.29E!01
5 14 9.72E!02 1.06E!01 1.51E!01

10 13 7.50E!02 8.86E!02 1.31E!01
10 14 9.42E!02 1.03E!01 1.46E!01

20 13 7.17E!02 8.44E!02 1.08E!01
20 14 8.29E!02 9.91E!02 1.39E!01

30 13 6.98E!02 8.18E!02 1.05E!01
30 14 8.05E!02 9.60E!02 1.23E!01

40 13 6.85E!02 8.00E!02 1.03E!01
40 14 7.88E!02 9.39E!02 1.20E!01

Table 8
AGT Stark width of ¸

14
}¸

16

¹ P ¸
14

¸
15

¸
16

5 13 1.38E!01 1.88E!01 1.97E!01
10 13 1.32E!01 1.79E!01 1.87E!01
20 13 1.25E!01 1.55E!01 1.77E!01
30 13 1.21E!01 1.50E!01 1.71E!01
40 13 1.19E!01 1.46E!01 1.66E!01

The comparison of the tabulated Stark widths with the KG Stark widths (where applicable)
shows the inaccuracy of the latter signi"cantly increases with the growth of both the electron
density N

%
and the upper principal quantum number n. However, even for the ¸a line at densities of

the order of 1017 cm~3, where the experimental width is by a factor of two greater than the KG
width and the entire di!erence between the two widths was usually `blameda on the ion dynamics,
it turns out the following: the AGT eliminates about one half of this discrepancy just by treating
electrons more accurately than in the KG theory, which might mean that the ion-dynamical
contribution could be about a factor of two smaller than it was previously thought.

Appendix A. The ratio of the AGT to the ST Weisskopf radius for hydrogen lines

During our analysis, we found that the weighted average over the normalized Stark components
for hydrogen lines

g
n,n{

,+
X

f
X
DXD (A.1)
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Table 9
Stark FWHM of Balmer alpha (2}3)

¹ P AGT KG

5 15 1.55E!02 1.94E!02
5 16 2.16E!02 2.98E!02
5 17 3.08E!02 3.78E!02
5 18 4.21E!02
5 19 5.72E!02

10 15 1.36E!02 1.55E!02
10 16 1.94E!02 2.68E!02
10 17 2.77E!02 3.72E!02
10 18 3.93E!02 4.30E!02
10 19 5.58E!02

20 15 1.15E!02 1.20E!02
20 16 1.73E!02 2.28E!02
20 17 2.44E!02 3.50E!02
20 18 3.59E!02 4.52E!02
20 19 5.02E!02 4.70E!02

30 15 1.01E!02 9.96E!03
30 16 1.61E!02 2.00E!02
30 17 2.27E!02 3.32E!02
30 18 3.34E!02 4.50E!02
30 19 4.81E!02 5.14E!02

40 15 9.15E!03 9.00E!03
40 16 1.51E!02 1.84E!02
40 17 2.16E!02 3.16E!02
40 18 3.16E!02 4.46E!02
40 19 4.66E!02 5.38E!02

could be obtained analytically. For the lines without the central components (i.e., n#n@ is even):

g
n,n{

"1
2
(n2!n@2). (A.2)

For the lines with the central components (i.e., n#n@ is odd):

g
n,n{

+1
2
n2, nAn@; g

n,n{
"1

3
(n2!n@2), n"(n@#1)A1. (A.3)

A direct consequence of this result is the ratio of the Weisskopf radius, averaged over all
components, of AGT to the semi-empirical Weisskopf radius of KG, is exactly 1.5 for the lines
without the central components while it approaches 1.5 for the lines with the central components.
Table 1 illustrates that ratio for the lines with the central components, where the ratio R is

R,

SoAGT
W

T
oST
W

"3
+

X
f
X
DXD

n2!n@2
. (A.4)
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Table 10
Stark FWHM of Balmer beta (2}4)

¹ P AGT KG

5 14 1.44E!01 1.52E!01
5 15 1.49E!01 1.57E!01
5 16 1.56E!01 1.62E!01
5 17 1.54E!01 1.53E!01
5 18 1.52E!01
5 19 1.58E!01

10 14 1.47E!01 1.55E!01
10 15 1.52E!01 1.61E!01
10 16 1.61E!01 1.68E!01
10 17 1.69E!01 1.70E!01
10 18 1.61E!01 1.56E!01
10 19 1.67E!01

20 14 1.48E!01 1.55E!01
20 15 1.53E!01 1.63E!01
20 16 1.62E!01 1.72E!01
20 17 1.75E!01 1.84E!01
20 18 1.82E!01 1.79E!01
20 19 2.08E!01

30 14 1.48E!01 1.58E!01
30 15 1.53E!01 1.63E!01
30 16 1.62E!01 1.72E!01
30 17 1.76E!01 1.84E!01
30 18 1.89E!01 1.89E!01
30 19 1.90E!01

40 14 1.49E!01 1.58E!01
40 15 1.53E!01 1.63E!01
40 16 1.62E!01 1.72E!01
40 17 1.76E!01 1.85E!01
40 18 1.91E!01 1.95E!01
40 19 1.95E!01

The numerical results given in Table 1 can be understood physically as follows. Consider
a radiative transition n%n@, where n<n@. In the upper multiplet, the number of sublevels having
a particular value of the electric quantum number q is equal to (n!q). However, due to selection
rules with respect to the magnetic quantum number m, only (n@#1) of them participate in the
transition if q is even or only n@ of them participate in the transition if q is odd (or even less than n@ if
q'n!n@).
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Table 11
Stark FWHM of Balmer gamma (2}5)

¹ P AGT KG

5 14 1.46E!01 8.84E!02
5 15 1.88E!01 1.72E!01
5 16 2.10E!01 1.90E!01
5 17 2.03E!01 1.71E!01

10 14 1.01E!01 5.08E!02
10 15 1.81E!01 1.60E!01
10 16 2.16E!01 1.99E!01
10 17 2.31E!0 2.02E!01

20 14 4.32E!02 3.58E!02
20 15 1.65E!01 1.26E!01
20 16 2.12E!01 1.98E!01
20 17 2.44E!01 2.22E!01

30 14 3.40E!02 3.10E!02
30 15 1.49E!01 7.64E!02
30 16 2.06E!01 1.94E!01
30 17 2.45E!01 2.28E!01

40 14 2.89E!02 2.80E!02
40 15 2.89E!02 6.50E!02
40 16 2.01E!01 1.89E!01
40 17 2.44E!01 2.32E!01

Allowing for that, let us calculate the average value of DqD, for example for an odd n:

SDqDT
3!$

+2
+(n~1)@2

k/1
(2k)(n@#1)#+(n~1)@2

k/1
(2k!1)n@

2
n!1

2
(2n@#1)

"

2(2n@#1)
1
2

n!1
2

n#1
2

!n@
n!1

2
n!1

2
(2n@#1)

"

n#1
2

!

n@
2n@#1

"

n
2C1#

1
(2n@#1)nD+

n
2
. (A.5)

A similar calculation of SDqDT for an even n yields the same result: SDqDT+n/2.
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Table 12
Stark FWHM of Balmer delta (2}6)

¹ P AGT KG

5 13 2.93E!01 2.98E!01
5 14 3.23E!01 3.22E!01
5 15 3.59E!01 3.44E!01
5 16 3.84E!01 3.38E!01
5 17 4.30E!01

10 13 2.90E!01 2.94E!01
10 14 3.17E!01 3.20E!01
10 15 3.57E!01 3.48E!01
10 16 3.98E!01 3.64E!01
10 17 4.06E!01 3.24E!01

20 13 2.85E!01 2.86E!01
20 14 3.10E!01 3.18E!01
20 15 3.47E!01 3.48E!01
20 16 3.96E!01 3.78E!01
20 17 4.28E!01 3.70E!01

30 13 2.81E!01 2.84E!01
30 14 3.05E!01 3.10E!01
30 15 3.41E!01 3.46E!01
30 16 3.90E!01 3.80E!01
30 17 4.38E!01

40 13 2.79E!01 2.82E!01
40 14 3.01E!01 3.10E!01
40 15 3.37E!01 3.42E!01
40 16 3.85E!01 3.82E!01
40 17 4.38E!01

If we would disregard the selection rules and average over all Stark sublevels, we would arrive to
a di!erent result:

SDqDT
!--
+2

+n~1
k/1

q(n!q)
n2

"

21
n2

(n!1)n!
2

6n2
(n!1)n(2n!1)

"(n!1)
n#1
3n
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Table 13
AGT Stark width of H

7
}H

10

¹ P H
7

H
8

H
9

H
10

5 13 3.72E!01 5.81E!01 7.33E!01 1.01E#00
5 14 4.35E!01 6.57E!01 8.30E!01 1.15E#00
5 15 4.83E!01 7.32E!01 9.13E!01 1.48E#00
5 16 4.99E!01 8.96E!01

10 13 3.45E!01 5.66E!01 7.08E!01 9.73E!01
10 14 4.21E!01 6.39E!01 8.11E!01 1.12E#00
10 15 4.85E!01 8.76E!01 9.23E!01 1.44E#00
10 16 5.33E!01 9.18E!01

20 13 3.08E!01 5.48E!01 6.72E!01 9.34E!01
20 14 3.99E!01 6.17E!01 7.82E!01 1.07E#00
20 15 4.73E!01 7.10E!01 9.04E!01 1.37E#00
20 16 5.40E!01 9.02E!01

30 13 2.80E!01 5.36E!01 6.47E!01 9.11E!01
30 14 3.82E!01 6.03E!01 7.61E!01 1.04E#00
30 15 4.61E!01 6.94E!01 8.85E!01 1.33E#00
30 16 5.36E!01 8.84E!01

40 13 2.57E!01 5.28E!01 6.27E!01 8.95E!01
40 14 3.69E!01 5.93E!01 7.46E!01 1.02E#00
40 15 4.51E!01 6.82E!01 8.69E!01 1.19E#00
40 16 5.29E!01 7.84E!01

"

n2!1
3n

+

n
3
. (A.6)

However, it should be emphasized that averaging over all Stark sublevels should be appropriate
for n"n@#1<1, since in this case practically all Stark sublevels of both the upper and lower
multiplets are involved in the radiative transition. This expectation is con"rmed by our numerical
calculations of the quantity g

n,n{
for n"n@#1. As the result of the numerical calculations in this

case we obtained

lim
n?=

g
n,n~1

+n2/3, (A.7)

which is consistent with the analytical result Eq. (A.6).
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Table 14
AGT Stark width of H

11
}H

13

¹ P H
11

H
12

H
13

5 13 1.22E#00 1.58E#00 1.86E#00
5 14 1.39E#00 2.06E#00 2.15E#00

10 13 1.17E#00 1.52E#00 1.79E#00
10 14 1.35E#00 1.96E#00 2.09E#00

20 13 1.12E#00 1.45E#00 1.70E#00
20 14 1.30E#00 1.85E#00 2.00E#00

30 13 1.09E#00 1.41E#00 1.65E#00
30 14 1.26E#00 1.91E#00 1.94E#00

40 13 1.07E#00 1.38E#00 1.62E#00
40 14 1.24E#00 1.60E#00 1.89E#00

Appendix B. Ful5llment of the unitarity requirements at large DsD

The electron impact operator is given by

/
nn{

"N
%P

=

0

f(v)vP
=

0

do 2poMS
n
SH
n{
!1N

!7'
.

For the Lyman series:

/
nn{

"N
%P

=

0

f(v)vP
=

0

do 2poMS
n
!1N

!7'

"!N
%P

=

0

f(v)vP
=

0

do 2poG
2+2+

a{
(Dxaa{D2#Dyaa{D2)

3m2
%
v2o2a2

0

CH, (B.1)

C
~
"

3m2
%
v2o2a2

0

2+2+
a{

(Dxaa{D2#Dyaa{D2)
M1!S

n
N
!7

"

4m2
%
v2o2Z2

r
3n2(n2!q2!m2!1)+2

M1!S
n
N
!7

. (B.2)
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Table 15
AGT Stark width of H

14
}H

16

¹ P H
14

H
15

H
16

5 13 2.60E#00 2.70E#00 3.72E#00
10 13 2.44E#00 2.58E#00 3.48E#00
20 13 2.12E#00 2.44E#00 3.22E#00
30 13 2.05E#00 2.36E#00 3.08E#00
40 13 2.01E#00 2.31E#00 2.98E#00

The coe$cient in front the M2N can be re-written as

4
3(n2!q2!m2!1)

o2(3/2)2

A
3n+

2Z
r
m

%
vB

2
"

3
n2!q2!m2!1A

o
o/.!.
W
B

2

where

o/.!.
W

,

3n+
2Z

r
m

%
v
.

Since

o/o/.!.
W

"Z/>

we get

C
~
"

3
n2!q2!m2!1A

Z
>B

2
M1!S

n
N
!7'

.

By choosing D1!S
n
D"2, we "nally obtain

C6.-.
~

"

6
n2!q2!m2!1A

Z
>B

2
. (B.3)

The coe$cient in front of Z2/>2 reaches its maximum value for n"2 N

(C6.-
~

)
.!9

"3Z2/>2.

Using the results of Appendix A, we now analyze the average of

sa"qa!
nb
na

qb.

In the case of na"nb#1A1:

s6 a"q6 a!
nbM
na

q6 b"
n2a!1

3na
!

nb
na

.
n2b!1

3nb

"

n2a!n2b
3na

+

na
3
. (B.4)
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Table 16
Comparison with Grutzmacher}Wende's experiment for Lyman alpha (1}2)

N
%

(1017 cm~3) ¹(K) AGT (As ) KG (As ) EX (As ) AGTD (%) KGD (%)

1 12700 7.382E!3 5.000E!3 1.660E!2 55.53 78.26
2 13200 1.375E!2 9.500E!3 2.420E!2 43.19 68.33
3 13200 1.987E!2 1.300E!2 3.050E!2 34.84 63.89
4 14000 2.537E!2 1.600E!3 3.680E!2 31.06 67.9

In the case of na<nb:

s6 a"q6 a!
nbM
na

q6 b+
na
2
!

nb
na

nb
2

"

n2a!n2b
2na

+

na
2
. (B.5)

Here and below the symbol fM means the average of f over the line space.

(n2!q2!m2!1)+
2n2

3
(for nA1 and for n"n@#1A1)

C6.-.
~

+

6Z2

2n2>2/3
"

9Z2

n2>2
"G

( Zs6 Y)2"(2Z
a
)2 for n"n@#1A1,

( 3Z
2s6 Y)2"(3Z

a
)2 for nAn@,

where a,2DsD>. Generalized theory for DsD<1 at small Z yields

RC
~
+!

3Z2

a2
cosA

a
ZB NDRC

~
D43

Z2

a2
(C6.-.

~
. (B.6)

Appendix C. Lyman and Balmer Stark width tables

In this section we present tables (Tables 2}16) of Stark width for Lyman and Balmer lines up to
n"16. We compare with KG6 (where available). The following is an explanation of the symbols
that appear in the tables. The tables are divided into two groups: one group has both the AGT's
and KG's results and the other group has only the AGT's (KG's data is not available). Both groups
have the "rst and second columns common. The "rst column, labeled ¹, represents the temper-
ature as 103¹ K. The second column, labeled P, represents the electron density as N

%
"10P cm~3.

For the "rst group, column number three, with the label AGT, represents the FWHM obtained
from the AGT pro"le and last column, represents the FWHM given by KG [6]. Each of the "rst
group tables represent a separate spectral line (tables ¸a!¸d and Ha!Hd). The tables of the
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second group show the AGT width only, for several lines at a time. All FWHM are in alpha units

ja"
j (As )

1.2503]10~9[N2@3
%

(cm~3)]2@3
.

Table 16 presents Stark Width produced by the AGT and KG as compared with the Grut-
zmacher}Wende's experimental width (EX) for the Lyman-Alpha line. AGTD is the discrepancy
between the AGT and the experiment, and KGD is the discrepancy between KG and the
experiment.

References

[1] Ispolatov Ya, Oks EA. JQSRT 1994 51;129}38.
[2] Kepple P, Griem HR. Phys Rev 1968 173;317}25.
[3] Sholin GV, Demura AV, Lisitsa VS. Sov Phys JETP 1973 37;1057}65.
[4] Touma JE. PhD Thesis, Auburn University, 1998
[5] Grutzmacher K, Wende B. Phys Rev A 1977 16;243.
[6] Griem HR. Spectral line broadening by plasmas. New York: Academic Press, 1974. Appendix III.

J.E. Touma et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 65 (2000) 543}571 571


