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Abstract-The existing analytical models of ion dynamical broadening, while working 
relatively well at high densities, become progressively more inaccurate at low densities. We 
have developed a new analytical model that is free from this shortcoming and is also simpler 
than most of its predecessors. Our model is based on dynamic characteristics of the 
multi-particle ion microfield introduced by Chandrasekhar and von Neumann. These 
characteristics are used for separating the entire ensemble of microfields into two parts that 
act differently on radiating atoms/ions: a dynamic part, that is then treated in the impact 
approximation, and the remaining part, treated in the quasistatic approximation. It turns out 
that this model not only is simpler andfaster than the previous analytical models, but also 
is practically as accurate as simulation models. The comparison with the experiments shows 
that our model is universal: it yields a good agreement with the experiments over five orders 
of magnitude density range where the experimental results are available. 0 1997 Elsevier 
Science Ltd. All rights reserved 

1. INTRODUCTION 

There are two groups of models for the ion dynamical broadening: simulation models (SM) and 
analytical models (AM) - see, e.g, Ref. 1 and references therein. SM are further subdivided into 
fully numerical models (where both the plasma and the atomic parts of the problem are treated 
numerically) and semianalytical models (where only the first part is calculated numerically). SM 
are slow and expensive. Compared to them, AM, such as the model microfield method (MMM) 
and the frequency fluctuation model (FFM), are faster and less costly. However, all the models, 
while working relatively well at high densities, become progressively more inaccurate at low 
densities. The FFM fails to reproduce the ion impact regime; the MMM reproduces this limit only 
at densities several orders of magnitude below the correct onset of the ion impact regime. 

We have developed a new AM that is free from this shortcoming and is also simpler than most 
of its predecessors. Our model is based on a more extensive use of stochastic characteristics of the 
multi-particle ion microfield compared to the MMM. These characteristics are used for separating 
the entire ensemble of microfields into two parts that act differently on radiating atoms: a dynamic 
part, that is then treated in the impact approximation, and the remaining part, treated in the 
quasistatic approximation. It turns out that our model is accurate, being simpler and faster than 
the MMM. In fact, for high and medium densities our model yields the same results as the SM 
and the experiments. For lower densities, in distinction to all the previous ion-dynamical models, 
our model reproduces the ion impact broadening limit 24 at the correct onset density and yields 
results in better agreement with experiments than any of the predecessors. 

2. DESCRIPTION OF THE MODEL 

The first goal is to divide the ensemble of microfields into the dynamic and quasistatic 
subensembles and to calculate effective densities N,, and N, of ions in each subensemble. To achieve 
this we employ the basic characteristic of the multi-particle ion microfield which is the frequency 
Q of the variation of any field component at a fixed value of the field strength: 

L2 E [ < (dF,,/dt)* > F + < (dF,/dt)2 > ,]“2/(3”2F) . (1) 
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Using the corresponding results by Chandrasekhar and von Neumann 5.6, this frequency can be 
represented in the form 

0, = (2.603)“ZN,“3(2ZJ;lM,)“2, /I,,, = (15/g)“’ z 1.233 , (2) 

where /I = F/F, is the reduced field strength, F. x 2.603Z,eN,2”. 
The separation procedure combines two well-known criteria: the modulation-type and 

damping-type methods for determining the boundary between quasistatic and dynamic fields (see, 
e.g., Ref. 7). In other words, it is based on comparing L?(B) (Fig. 1, solid line) with both the 
instantaneous splitting of a hydrogen line n-tn’, 

cog = [(n* - n’2)hFo/m,e]p (3) 

(Fig. 1, dashed line), and the total damping constant, 

Y = 2(x + Ye) (4) 

(Fig. 1, dotted line), where y, and ys are the ion and electron impact HWHMs of the line, y, being 
calculated below. Further details on the modulation-type quasistaticity condition are given in 
Appendix A. After finding the root /I’ of the equation 

Q(B) = max(qd), (5) 
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Fig. 1. Comparison of the frequency Q(B) of the variation of any component of the ion microtield (solid 
line) with both the instantaneous splitting op of a hydrogen line ~-WI’ (dashed line) and the summary 
damping constant y = 2(y, + yJ (dotted line). The root of the equation Q(p) = max(o,, y) separates the 

dynamic and quasistatic ion subensembles. 
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we calculate the densities of the dynamic Nd and quasistatic Ns ions as follows: 8 
Nd = pN,, N, = (1 - p)N,, p = s dS H(P) 3 

0 
(6) 

where H(p) is the Holtsmark distribution function. 
It should be noted that Fig. 1 depicts the situation characteristic of relatively high densities where 

the max(wB, y) = y. This means that the root j3’ of Eq. (5) is determined by the intersection of the 
solid curve sZ(j3) with the dashed horizontal line y and that /I’ w 1 or /I’ < 1. 

For relatively low densities the situation is such that max(o,, y) = op. In other words, the root 
of Eq. (5) in this case is determined by the intersection of the solid curve Q(p) with the dotted 
straight line wB; the intersection occurs at /I’ $ 1. 

At the second stage the goal is to calculate the total damping constant y = 2(y, + ye) that includes 
the ion impact width y, due to the dynamic subensemble of the ion density Nd and the electron 
impact width ye. It turns out that for the dynamic ion subensemble the number of ions in the ion 
Weisskopf sphere is smaller than one not only for the case where the initial density N, is low but 
also for high densities N,. This is due to the fact that in the latter case we have Nd 6 N,. Therefore 
the ion impact broadening operator @, can be calculated using the standard, binary ion impact 
theory ‘~4 by substituting N, by N,,. 

In order to find the total damping constant for lines with the central (unshifted) Stark 
component(s), we calculate the following line profile: 

Z,(Aw) = ( - 1/7c)Re 1 d!d${[iAw - iw,B(FP) + @(NJ + @,I-‘>$ t 
a*‘!?,8 

(7) 

where 

F p x 1.62F, x 4.21Z+~N;‘~ (8) 

is the most probable value of the quasistatic ion field (from the Holtsmark distribution) controlled 
by the density Ns of the quasistatic ions. As the quasistatic field increases, it provides the transition 
from the merged to isolated Stark components ‘; in the latter limit the width of the line with the 
central component(s) is practically determined by the impact width of the central component(s) 
only. 

From the profile given in Eq. (7) we determine the FWHM y. We note that the obtained total 
damping constant y depends on the value of N,,, which in its turn was calculated at the stage 1 
using the value of y. Clearly, this algorithm is an iterative procedure that, fortunately, converges 
very rapidly. 

As for the lines without the central Stark components, we suggest that the total damping constant 
y should be determined as the FWHM of the following profile which is due to only homogeneous 
mechanisms of Stark broadening: 

I,,(Ao) = ( - l/x)Re c d,Bd${[iAo + @(NJ + @,I-I}:$, . 
la’@3 

(9) 

At the third stage we calculate the final line profile by the formula 

where 

P, = FIF,, F, = 2.603Z,eNi13 . (11) 

The above formalism contains both the ion quasistatic limit at high densities and the ion impact 
limit at low densities. 
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Table 1. 

N T (K) MMM ” Impact 2A SM I2 OUT Experiment error (%) 

9.27 x lOI 11600 118 123 8 3.7 
1.00 x 10” 10000 4.3 4.6 4.7 4.6 q+’ 2.0 
1.00 x lOI 10000 1.00 1.15 1.16 1.2 p ” 0.9 
1.00 x lOI5 10000 0.22 0.28 0.30 0.28 *-I’ 6.5 
1.00 x 10” 10000 0.089 0.051 0.122 
1.35 x IO” 13500 0.088 0.119 0.14 I4 1s 

3. DISCUSSION 

Using this model, we calculated Stark profiles of the H. line and HWHM of these profiles for 
a broad range of densities from lOI cm - 3 to lOI9 cm - ‘. The comparison of our results with 
experimental and previous theoretical results is presented in Table 1, where the last column shows 
the relative inaccuracy of our results compared to the experiments. The conclusions are the 
following. 

a. Our model is in excellent agreement with experiments ‘-” (1% to 6% accuracy) over the range 
of densities from 10” cme3 to lOI cme3. 
b. In this range it yields practically the same accuracy as the SM ” and a much higher accuracy 
than the MMM ‘), despite being simpler and faster than the MMM. 
c. At densities below lOI cm-‘, the MMM and even the SM I2 fail to reproduce the ion impact 
regime 24, while this regime is reproduced by our model at these densities. 
d. At densities of the order of lOI cm-‘, our model is still in good agreement with the experiment 
I4 (within 15% accuracy), while the SM I2 underestimates the broadening by a factor of 2 or 3. We 
note that at this density the fine structure contribution of x 15% was subtracted from the 
experimental HWHM. However, this indicates that one should not expect better than 15% 
agreement between the calculations based on Coulomb-radiator wave functions and the 
experimental Stark HWHM. The incorporation of the fine structure into our model will be 
presented elsewhere. 

Thus our analytical model is not only simpler, faster, and much more accurate than the MMM, 
but is also suitable for a variety of plasmas: it works well over five orders of magnitude density 
range. 
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APPENDIX 

THE MODULATION-TYPE QUASISTATICITY CONDITION (MQC) 
It is well known that any type of MQC is based on the adiabatic approach to the Stark broadening (see, e.g., review’). 

Let us first recall the structure of the adiabatic contribution in the electron broadening and then proceed to the ion 
broadening. 
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The old adiabatic theory (presented, e.g., in review ‘) was based on the scalar summation of perturber contributions. 
An explicit expression for the vecror-summarion-busedadiabatic width was given for the first time in a recent paper I5 (where 
a generalized semiclassical theory of the electron broadening, incorporating both adiabatic and nonadiabatic contributions, 
was developed). Particularly, in the generalized adiabatic theory presented on p. 135 of Ref. 15, the integration over the 
impact parameters has the form 

the adiabatic Weisskopf radius pw. being defined by 

pw.. = 2C,,lv, C.p = 3&fil(2m,), XZR = nq, - n’qb , 642) 
where the Stark constant C,A of the component a+$ is expressed through electric quantum numbers q. = n, - nZ and 
qp = n,’ - n,’ of the upper and lower Stark sublevels, respectively. 

Eq. (Al) shows that the adiabatic Weisskopf radius pW,. defined in Eq. (A2) provides a separation between the region 
of the monotomc behavior of the integrand, i.e., p > pW.. and the region of the strong oscillations of the integrand, i.e., 
p < pW... Thus the contribution of the former to the adiabatic impact width predominates. The precise definition in Eq. (A2) 
of the Weisskopf radius following from the generalized theory I5 differs by the factor of 2 from the frequently employed 
’ order-of-magnitude definition p$$ _ Czs/v. 

Physically the adiabatic Weisskopf radius defined in Eq. (A2) separates the region of the weak modulation of the atomic 
oscillator from the region of the strong modulation. To obtain the same separation of these two regions in terms of 
frequencies requires a comparison of two frequencies calculated at the instant of the closest approach of the perturbing 
electron to the radiator. The first one, 

Q(P) = O/P 1 (A3) 

is the frequency of the variation of the electron field. The second frequency is 

w’p = 2C,plP1 , (A4) 

the instantaneous splitting of the symmetric pair of lateral Stark components (n,q)++(n’,q’) and (n. - q)++(n’, - q’). Indeed, 
the root of the equation O(p) = op yields the Weisskopf radius defined m Eq. (A2). 

With this as background we derive the MQC for the ion broadening. Let us start from the binary case and then generalize 
the result for the multi-particle case. For such a generalization to be possible, we change the parametrization of the classical 
paths of perturbers in the binary case. 

In the conventional parametrization used in the impact formalism, a rectilmear path of a perturber r(r) = p + VI is 
characterized by the vector of its velocity v and by the perturber’s radius-vector p at the instant of the closest approach 
(so that p*v = 0). In distinction to this, we characterize a rectilinear path of a perturber r(l) = R + vt by the vector of 
its velocity v and by the perturber’s radius-vector R at the instant f = 0, but tie do nof require t = 0 to be the instant of 
the closest approach (so that R*v # 0). 

In this parametrization the function describing the phase modulation of the atomic oscillator (see, e.g., Eq. (13) of Ref. 
15) can be presented in the form 

s 

+ ?. 
f = ev{i[C+d.Ze)l C(f) dt} = exp{ bpw,J(2RWn, - (w l u)u,ll[l - (w l uY1) , 

- r 
(A5) 

where 

w = R/R, u = v/c (‘46) 
Introducing spherical coordmates B,, &, of the unit vector w in the reference frame with the polar axis Or and spherical 
coordinates tl,, 4” of the unit vector II in the reference frame wifh the polar am Oz’ilw, we obtain 

f = exp{iD[2cos OR - cos &(cos 8,cos tin - sin 8,sin e,cos +)]/(l - cos*e,)j , (A7) 

where 

D = pwJ(2R). 4 = +R - d, (‘48) 
The averaging off over 4 results in the following: 

if > + = Jo[Bsin oRsin 8, cos 8, i( 1 - cos%, )]exp[iDcos e,(2 - cos’e, )I( 1 - cos?e, )] , (A9) 

where Jo(x) is the Bessel function. One out of two remaining angular averagings (over cos 6,) can also be performed 
analytically using the standard integral employed in Ref. 15, Eq. (28): 

s 
dr (1 - ~*)~“2tJO(DIf)~~~[DI(l - ?)“‘I = G-‘sin G, G = (D: + 0:)’ ’ (AlO) 

0 

With the help of Eq. (AIO), the angular average off over all three angles reduces to the form 

<f>..s= c dx G - ‘(x)sin G(x), G(x) = D(4 - 3x7 ‘/(I - x’) (All) 
JO 

Eq. (Al 1) demonstrates that the quantity G (which depends through D on the radiator-perturber distance R) separates 
the region of the monotonic behavior of the integrand, G < 1, from the region of the strong oscillations of the mtegrand, 
G z 1. The boundary G = I is equivalent to the following equation: 

x4-(2-3D2)x*-(4D1--l)=O. 6412) 
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It is easy to see that only at D < l/2 does Eq. (A12) have a real root X, falling within the integration limits (from 0 to 1): 

x0 = [I - 3D*/2 - D(I + 9D2/4)‘f*]“2 (A13) 

At D > l/2, real roots of Eq. (A12) fall beyond the integration limits. This means that at D > l/2 we have function G(x) > 1 
and, consequently, strong oscillations of the integrand in Eq. (Al 1) in the entire integration range. In other words, D = l/2 
serves as a boundary above which there occurs a significant drop-off of the adiabatic contribution of ions to the broadening. 
The boundary value D = l/2 corresponds to the radiator-perturber distance 

&=pw,. (Al4) 

Thus we have found that in the (R,v)-parametrization of perturber paths, the boundary between the region of the weak 
modulation of the atomic oscillator and the region of the strong modulation is determined by the adiabatic Weisskopf radius 
defined in Eq. (A2), the definition contaming the factor of 2 compared to the order-of-magnitude estimate ’ p$$ _ C&. 
Therefore, similarly to Eq. (A3) and (A4), the separation of the two regions in terms of frequencies requires a comparison 
of the frequency of the variation of the ion field, 

G(p) = u/R, (A15) 

with the instantaneous splitting of the symmetric pair of lateral Stark components, 

0’8 = 2C&R2 . (‘416) 
The generalization of the MQC from the binary ion microfield (i.e., caused by the nearest neighbor at a distance R from 
the radiator) to the multi-particle ion microfield is rather obvious. The frequency of the variation of the multi-particle ion 
field R should be used as in Eq. (1) rather than as in Eq. (A15). For the Holtsmark microfield the explicit expression for 
G(j) is given by Eq. (2) which in the binary limit /l > > 1 reduces to Eq. (A15). The instantaneous splitting of the 
symmetric pair of lateral Stark components should be employed in the form 

o’~ = P(nq, - n’q~Wol~,4B (Al7) 

The last step is to average the frequency w’~ over the line space (naturally, it would be required in the binary case as well). 
This step reduces to averaging the absolute value of the electric quantum number q over all n2 Stark states of the same 
principal quantum number: 

< 141 > = (2/n*) c q(n - q) = (n’ - 1)/(3n) 
y=, 

c418) 

With the help of Eq. (A18), we finally obtain < alp > = wir given by Eq. (3). 


