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UNIVERSITY OF NEVADA, RENO

Abstract

GPS.DM Observatory

Physics Department

Master of Science

Probing exotic fields with networks of atomic clocks

by Conner Dailey

An exotic light field (ELF) is a class of field beyond the standard model that could be

produced in high-energy astrophysical events with enough amplitude to be detected with

precision measurement sensors. A model that describes an ELF as a pulse of ultra-relativistic

matter waves and an estimate of the sensitivity for current and future networks of atomic

clocks to detect ELFs is developed here. The global positioning system (GPS) is presented

as an existing network of atomic clocks that has the potential to probe ELFs. A first proof-

of-principle search for ELFs emitted as bursts from the GW170817 neutron star merger

was performed with data from GPS. Although no concrete evidence was found for ELFs,

a foundation has been produced for future searches for ELFs originating from many other

astrophysical events, such as gamma ray bursts, black hole mergers, and solar flares for the

last ∼20 years of GPS operation.
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Chapter 1

Introduction

1.1 A Brief History of GPS

In this section I will give a short history of the GPS constellation and a concise explanation

on how it was designed and currently works. This information and further reading can be

found in [1], [2], and [3]. GPS has 3 major parts, the control, space, and user segments. I

will focus mainly on the control and space segments as they are of main relevance to this

work.

Figure 1.1: Artist’s rendition of the ex-
panded 24 slot GPS constellation, with 6 or-

bital planes [4].

The US Department of Defense designed and

implemented GPS starting in 1978 with the

launch of the first Block I satellite called NAVS-

TAR 1. A total of 11 of these prototype satellites

were launched by 1985, to test the software and

hardware of the system. Then 9 Block II satel-

lites were launched by 1990, and by 1994, a full

constellation of 24 satellites was completed with

the introduction of Block IIA satellites. With

this network size, it was then possible for users
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of GPS to communicate with a minimum of 5 satellites at once, at any time or place on

Earth. Full operational capacity of the network was declared in 1995. By 2008, a total of

57 GPS satellites had been successfully launched, many either being retired or acting as

active spares in case of a satellite failure. At the time of this work, there are a few more

iterations of satellites, including blocks IIR, IIR-M, and IIF, with Block III currently under

development. The modern GPS satellite blocks are outlined in Table 1.1. The quality of

the GPS raw data was dramatically improved when the artificial degradation of the GPS

signal was removed on May 1, 2000. By the end of 2019, there will be about 20 years worth

of high-quality GPS network time-series atomic clock data archived by JPL and available

to the public. The quality of the GPS network improves with each modern satellite added

to the network.

1.2 Inner Workings of GPS

This section outlines the operation of GPS in enough detail to be understood in the following

chapters. GPS works by broadcasting microwave signals from satellites in medium-Earth

orbit. The signals broadcast to the Earth by each satellite are driven by an atomic clock

(either based on Rb or Cs energy transitions) on board.

1.2.1 The Space Segment

The original design of GPS had 24 satellite orbit slots using only 6 different orbital planes,

which are labeled A-F. The orbits of the satellites are described in terms of the Keplerian

elements, the relevant ones of which are defined by Fig. 1.2. Most of these elements are set

by the design of the space segment.
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Legacy Satellites Modernized Satellites

Block IIA Block IIR Block IIR-M Block IIF Block III

• L1 frequency
broadcast for
civil users

• L1 and L2
frequencies
broadcast for
military users

• 7.5-year
design lifespan

• Launched
between
1990-1997

• On-board
clock
monitoring

• Launched
between
1990-1997

• All legacy
signals

• 2nd civilian
signal on L2
frequency

• New military
"M code"
signals

• 7.5-year
design lifespan

• Launched
between
2005-2009

• All Block
IIR-M signals

• 3rd civil signal
on L5
frequency

• Improved
accuracy,
signal
strength, and
quality

• 12-year design
lifespan

• Launched
between
2010-2016

• All Block IIF
signals

• 4th civil signal
on L1
frequency

• Enhanced
signal
reliability,
accuracy, and
integrity

• 15-year design
lifespan

• Laser
reflectors;
search and
rescue
payloads

• First launch in
2018

Clocks Onboard

2 Rb and 2 Cs
clocks

3 Rb clocks 3 Rb clocks 2 Rb clocks and
1 Cs clock

3 Rb clocks

Table 1.1: The modern GPS space segment, outlining the differences be-
tween satellite iterations. The GPS frequency band L1 operates at 1575.42
MHz, L2 at 1227.6 MHz, and L5 at 1176.45 MHz. This table is adapted from

[4].
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Figure 1.2: Definition of the orientation
specifying Keplerian elements. The reference
direction in this case is the x-axis of the ECI
frame and the plane of reference is the Earth’s

equatorial plane. [4].

The orbits are approximately circular, with

an inclination of 55◦ and a semi-major axis of

26559.7 km. The orbital planes are equally

spaced about the equator, meaning each is sep-

arated by a difference in their longitude of the

ascending nodes (also commonly refered to as

the right ascension of the ascending node) of

60◦. Within each orbital plane, the satellites are

asymmetrically spaced by their true anomaly (or

if measured from the ascending node can be de-

scribed by the argument of latitude) by design.

In 2011, the 24 slot network was expanded to contain 27 satellites for better visibility and

accuracy. The positions for the 24 slot and the expanded 24 slot networks are outlined in

Figure 1.3. The positions of the excess satellites in the network are typically placed near

active satellites that are expected to require replacement the soonest. Although several

satellites act as active spares, they still transmit data, so the effective atomic clock network

size includes all non-retired satellites. In August 2017, the time period relevant to the anal-

ysis in the following chapters, there were 31 operational satellites in the GPS constellation.

1.2.2 The Control Segment

The GPS space segement broadcasts microwave signals to the terrestrial control segment.

This is mainly a network of specialized Earth-based GPS receivers referred to here as sta-

tions. Each station of Fig. 1.4 has a 4-character identifier and constantly measures the

carrier phase of the microwaves signals from each satellite its view. This network includes

the US Naval Observatory (USNO) master clock station USN3 in Washington D.C., with a
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Figure 1.3: Depiction of the arrangement of satellites in the 24 slot config-
uration (baseline slots) and the expanded 24 slot configuration [3].

clock phase that is determined by a weighted average of many H-maser clocks on site. Sta-

tion AMC2 in Colorado Springs, Colorado, is an H-maser based station operated by USNO

that is loosely steered to the master clock using a satellite link. In both cases, USN3 and

AMC2 have their data calibrated for cable delays, with AMC2 loosely steered to USN3, so

that they are synchronized at the ns level. Therefore it is particularly useful that one of

these stations be used as a reference clock in the system, with the other acting as a stability

check on the GPS network solution. Other H-maser based stations of varying quality and

characteristics are shown around the globe (Fig. 1.4). Some H-maser stations are problem-

atic in that the clock phases are known to jump frequently (e.g., station IRKT). However,

there is a sufficient number (at least 8) high-quality H-maser based stations to detect the

passage of a 1 ns clock phase anomaly through the global network.

1.2.3 Solutions and Software

To perform the necessary computations for the complicated positioning networks, JPL de-

veloped the GNSS-Inferred Positioning System and Orbit Analysis Simulation Software
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Figure 1.4: The 40-station global GPS network of Earth-based stations
acquiring 1 s dual-frequency carrier phase data, indicating clock type. Blue

stars are H-masers, red are Rb, green are Cs, and black are quartz.

(GIPSY-OASIS, or commonly just referred to as GIPSY). As of 2018, the next-generation

GipsyX software has taken over processing and has re-processed all previous data, and is

proposed to be used here. GIPSY has been validated by a series of high precision NASA

missions over the last decade (e.g., GRACE, TOPEX, JASON) that have required space-

craft positioning at the cm level, timing at the < 0.1 ns level, and station positioning at the

few-mm level. GIPSY and new GipsyX software are licensed to UNR for research purposes.

Each of the high-quality receiver stations of Fig. 1.4 provide raw GPS data at 1 s intervals

in standard Receiver Independent Exchange Format (RINEX) files that are distributed by

the NASA Crustal Dynamics Data Information System (CDDIS) archive, as part of the

International GNSS Service (IGS). Note that several of these ground stations are disciplined

by atomic clocks, which could themselves be made part of the atomic clock sensor network

together with those in orbit. At every second, a file from each station is generated that

contains data from all GPS satellites in view, which is typically 6–10. Having sufficient

coverage from a network such as this guarantees that every GPS satellite is in view of several

ground stations at the same time. This ensures that the broadcast microwave signals can

be effectively transferred between the space and control segments, which allows the relative

clock phase to be determined with < 0.1 ns precision. At every 1 s epoch, the RINEX files
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contain 4 key measurements, including a carrier phase and a pseudorange at both L1 and

L2 frequencies, thus allowing for calibration of ∼ 10 ns amplitude ionospheric delay with

∼ 0.01-ns accuracy. Pseudorange is typically measured with ∼ 2 ns precision. In contrast,

carrier phase is measured with ∼ 0.02-ns precision. The Combination of the 4 observables

allow for robust detection of data outliers and cycle slips in the integer bias, and enable

robust integer ambiguity resolution [5, 6].

The GipsyX software takes the observables from each network station and uses least-

squares to estimate the final solutions. The algorithm can be considered in three stages:

1. Pre-processing of the data to detect and repair common problems

2. Accurate modeling of the observables

3. Inversion of model parameters

The GipsyX software models abide by the conventions of the International Earth Rota-

tion and Reference Frame Service (IERS), using standard antenna and inter-channel bias

calibrations approved and distributed by IGS [7]. Included in the IERS standards is the

conventional treatment of relativistic modeling of the GPS satellite clocks, accounting for

variation in satellite velocity and gravitational potential due to small orbit eccentricity, re-

sulting in a semi-diurnal sinusoidal signal of ∼ 30 ns amplitude. The frequency of the GPS

clocks are intentionally set slower to account for the mean effects of relativity (−38 µs per

day) and Shapiro delay (< 0.1 ns) on the signals as they traverse the Earth’s gravitational

potential. Residual relativistic effects are dominated by Earth flattening (also known as the

J2 effect), resulting in a 6 hour periodic signal of amplitude ∼ 0.07 ns [8].

GipsyX contains a sophisticated least-squares estimator, similar conceptually to the

Kalman Filter. Tropospheric delay is modeled using state-of-the-art global mapping function

that relates zenith delay to any elevation and azimuth, depending on geographic location

and time of year. The zenith delay and two gradient parameters are then estimated as a
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random walk process using the GPS data from each station. By this method, tropospheric

delay can be modeled at the few-mm level, corresponding to ∼ 0.01 ns. As stated before,

station positions can be estimated at the few-mm level, but if the goal is to estimate satellite

and station clocks, it is sufficient (and more robust to detect problem data) to fix station

positions at their known reference frame coordinates at the epoch of measurement. These

coordinates are typically known at the few millimeter level, corresponding to ∼ 0.01 ns.

The GipsyX software models the GPS satellite orbits in the ECI (Earth-centered iner-

tial) frame, which is aligned to the International Celestial Reference Frame (ICRF). The

solid Earth is modeled in the ECEF (Earth-centered Earth-fixed) frame, co-rotating with

the Earth. Short-term motions of the solid Earth surface are dominated by solid Earth tides

at the 0.5-m (< 2 ns) level at semi-diurnal period. Known motions of the solid Earth surface

including solid Earth tides and ocean tidal loading are typically modeled with millimeter ac-

curacy, corresponding to < 0.01 ns. Connecting ECEF to ECI is Earth orientation, modeled

as a combination of precession, nutation, polar motion, and rotation. Of these, polar motion

and length of day are the least predictable, and must be measured continuously. GipsyX

can estimate polar motion and length of day from the GPS data to within a few mm at the

Earth’s surface, corresponding to ∼ 0.01 ns. Once all of this modeling is complete, the final

solutions are published by JPL to the public within a week of the day being estimated.

1.2.4 Data from JPL

As mentioned before, high-quality timing data for nearly the past two decades are publicly

available and are routinely updated at 30 s intervals. However, there are now several hundred

GPS stations around the globe that produce raw GPS carrier phase measurements at 1 s

intervals, which provides a much finer time resolution of possible events, and increases the

discrete Fourier transform frequency range substantially. Such high rate data are not publicly

available, hence we have to generated them ourselves and with the help of JPL.
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There are several types of data regarding GPS that are processed and made available

by JPL. There are 3 tiers of access, ultra-rapid, rapid, and final. Ultra-rapid is updated 4

times per day with relatively low quality solutions but fast turn-around. Rapid is a daily

solution that is available 17 hours after every UTC day and is of higher quality. The type

we are generally interested in is final, which is released 13 days after the end of the solution

week and is of the highest quality. Within the released data is several different files that

serve different purposes like details on which satellites were in the shadow of the Earth for

example. The files we are concerned with are the satellite atomic clock time-series bias data

and the Cartesian positions of the satellites.

For our purposes, it is convenient to use satellite orbits that have already been determined

by JPL at 15-minute intervals. Since orbits are smooth in nature, interpolation can be

achieved with sub-mm (0.01 ns) error. The orbit positions themselves have an estimated

accuracy of 1-2 cm, corresponding to < 0.1 ns error. Whereas satellite orbit positions are

a dominant error source, it should be kept in mind that these errors have a very long time

variation compared to the ∼ 1, 000 s event time windows that will be proposed in later

sections. Satellite and station clocks are all estimated as a white noise process, so that the

estimated clock phase is entirely driven by the data with no a priori constraints. One clock

is held fixed (un-estimated) as a reference clock, as the data are only sensitive to relative

time.

1.3 Motivation

This work is based on the possibility that exotic light fields may cause apparent variations of

the fundamental constants of nature. Such variations in turn lead to shifts in atomic energy

levels, which may be measurable by monitoring atomic frequencies [9]. Such monitoring is

performed naturally in atomic clocks, which tell time by locking the frequency of externally
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generated electromagnetic radiation to atomic frequencies. Here, we propose to analyze

time as measured by atomic clocks on-board GPS satellites to search for event-induced

transient variations of fundamental constants. In effect we use the GPS constellation as a

∼ 50, 000 km-aperture exotic physics detector. We will be able to search for exotic physics

events in any time window over ∼ 20 years, such as those co-incident with known astrophys-

ical events, and establish means for continuous monitoring of GPS for these events in the

future. Using the GPS network as an observatory for exotic physics is the main objective of

the GPS.DM group.
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Chapter 2

Coupling to Atomic Clocks

2.1 Mathematical Formalism

This section serves as a brief introduction to the mathematical tools used to describe the

Standard Model of elementary particles. To include relativistic dynamics, it is useful to

think of space and time as one 4-dimensional entity. A signal point in space-time is known

as an event, and it is represented as a four-vector xµ with the indices µ = 0, 1, 2, 3. The

zeroth entry of the vector corresponds to the temporal component of the vector with the

nonzero indices being the spatial components. An event vector for example contains first

the time of the event, then the 3 dimensional position of the event,

xµ = (ct, ~x) . (2.1)

In Special Relativity, the 4-D space-time is non-Euclidean, that is to say that dot-products

do not act the same as they do in a Euclidean space. They act according to the space-time
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metric,

ηµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (2.2)

The metric is used to raise or lower 4-vectors. Vectors with an upper index are called

contravariant, while lower indices indicate covariant vectors. To switch between the two

vector types, you can sum over one of the indices of the metric,

xν = ηµνx
µ , (2.3)

where the repeated index µ implies a sum over the range of that index (one of the repeated

indices must be an upper, while the other is a lower). Note that the resulting 4-vector xν

now has the opposite sign in the spatial part, hence

xν = (ct,−~x) . (2.4)

We can now take a sum over these contravariant and covariant vectors, which defines the

dot product in space-time,

xµx
µ = (ct)2 − ~x · ~x . (2.5)

Derivatives in this formalism are written in a compact way. A derivative with respect to

the µth component is written with a single ∂µ. Note that though it is written as a covariant

vector, it does not have an opposite sign in the spatial component,

∂µ ≡
∂

∂xµ
. (2.6)
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Another important convention is the definition of the gamma matrices, defined as

γ0 ≡

 I 0

0 −I

 ~γ ≡

 0 ~σ

−~σ 0

 , (2.7)

where each element represents a 2x2 matrix with I denoting the identity matrix and σ

denoting the conventional Pauli spin matrices.

2.2 Fundamental Constant Variation

The Standard Model Lagrangian that describes the proton, electron, and electromagnetic

fields is then

LSM =
∑
j=e,p

ψ̄j(i~c∂µγµ −mjc
2)ψj − ecAµψ̄jγµψj −

1

4
FµνF

µν , (2.8)

where ψe (ψp) is the 4-component wavefunction of the electron (proton), e is the elementary

charge, and Aµ is the electromagnetic 4-potential, with the Faraday tensor defined as Fµν =

∂µAν − ∂νAµ. Here and below we use the rationalized Lorentz-Heaviside unit system for

electromagnetism. GPS.DM is interested in the addition of the following interaction terms

to this Lagrangian, with some exotic scalar field φ,

Lint =

[
−Γemec

2ψ̄eψe − Γpmpc
2ψ̄pψp +

1

4
ΓαFµνF

µν

]
φ, (2.9)

where the ΓX are the associated couplings constants. This is also known as the linear scalar

portal to standard model particles. We use a linear coupling to φ as an example here, but

the results are easily changed to the case of a quadratic coupling, as is demonstrated in later

chapters. The combination ΓXφ is dimensionless. The addition of these terms leads to the
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total Lagrangian,

L =
∑
j=e,p

ψ̄j(i~c∂µγµ −mjc
2(1 + Γjφ))ψj − ecAµψ̄jγµψj −

1

4
(1− Γαφ)FµνF

µν . (2.10)

From inspection, we can immediately make the interpretation of changing electron and

proton masses, but the scaling for α is not immediately obvious. To understand this, we

can make the following gauge transformation

Aµ →
e

c(1− Γαφ)
Ãµ. (2.11)

To understand what difference this will make, we must see how the factor FµνFµν scales

with this change,

FµνF
µν = (∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

= ∂µAν∂
µAν − ∂µAν∂νAµ − ∂νAµ∂µAν + ∂νAµ∂

νAµ

= 2(∂µAν∂
µAν − ∂µAν∂νAµ) . (2.12)

Once we plug in our gauge transformation into this expression, we will encounter derivatives

of the field φ, for example,

∂µ

(
Ãν

(1− Γαφ)

)
=

∂µÃν
(1− Γαφ)

+ Γα
Ãν∂µφ

(1− Γαφ)2
. (2.13)

Due to our interest in ultralight fields, which is equivalent to requiring that the field φ

oscillates very slowly over space and time, we make the argument that derivatives in the

electromagnetic vector field are much larger than those of the φ field on the scale of an atom,
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or ∂µφ/∂µÃν � 1, so we neglect that term. The relation then simplifies to

L =
∑
j=e,p

ψ̄j(i~c∂µγµ −mj(1 + Γjφ)c2)ψj

− α(1− Γαφ)−1~cÃµψ̄jγµψj − α(1− Γαφ)−1~/c
4
F̃µνF̃

µν , (2.14)

using the definition of the fine structure constant in this unit system α = e2/~c.We are now

free to make the interpretation that for slowly oscillating fields, these interaction terms vary

fundamental constants like

me,p → me,p(1 + Γe,pφ) , (2.15)

α→ α

(1− Γαφ)
≈ α(1 + Γαφ) . (2.16)

In the following chapters, we will use these results to show how linear or quadratic couplings

to the standard model particles and fields can directly affect atomic transition frequencies

based on such variation of fundamental constants.
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Chapter 3

Exotic Light Fields

3.1 Introduction

Multimessenger astronomy, a subject in which different classes of signals originating from the

same astrophysical event are observed, provides a wealth of information about astrophysical

processes with far-reaching implications [10]. The conventional focus of multimessenger

astronomy has been to search for signals from known fundamental forces and standard

model particles: electromagnetic waves, neutrinos, cosmic rays, and gravitational waves

(GWs) (Table 3.1).

Beyond searching for signals like GWs that are predicted by well-substantiated theories

like general relativity, other sensor networks [11] could be used to search for astrophysi-

cal signals predicted by different theoretical models [12]. Could exotic light fields (ELFs)

produced by cataclysmic astrophysical events be directly observed using atomic clocks [13,

14]?

Here we address this question by considering detection of ELFs associated with gravi-

tational wave events [15–17], estimating signal amplitudes, delays, rates, and distances of

sources to which global clock networks could be sensitive. This discussion is followed in

the next chapter by a proof-of-principle demonstration based on analysis of data from the
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network of atomic clocks comprising the global positioning system (GPS) with the GPS.DM

Observatory [13, 18–20]. We find in this chapter that networks of clocks can act as ELF

telescopes to detect signals from sources that produce ELF bursts of sufficient intensity, and

if ELFs exist, they could act as additional messengers for astrophysical events.

3.2 Physical Description of ELFs

Many of the great mysteries of modern physics suggest the existence of exotic fields with

light quanta (masses � 1 eV): the nature of dark matter [21–25] and dark energy [26–28],

the hierarchy problem [29], the strong-CP problem [30–36], and the search for a quantum

theory of gravity [37–39]. Intense bursts of such ELFs could be generated by cataclysmic

astrophysical events such as black hole or neutron star mergers (NSM) [40, 41], supernovae

[42, 43], or other phenomena, such as the processes that produce fast radio bursts (FRBs)

[44, 45]. Due to the small masses being considered for ELFs, a high energy event may not

be required for the production of ELFs, but may allow for enough released energy in a burst

of ELFs for them to become detectable.

Similar to antennae used to detect radio waves and interferometers used to detect GWs,

atomic clocks are sensitive to coherent, classical waves and are not suitable for detection of

individual particles. This is in contrast to detectors such as those employed in observations

of cosmic neutrinos [46], gamma rays [47, 48], and searches for weakly interacting massive

particles (WIMPs) [49, 50]. The key point is that in order to be detectable by atomic clocks,

the astrophysical source must produce coherent ELF waves with high mode occupation

numbers. Thus we focus our attention on coherent production mechanisms for ELFs [40, 41,

51, 52] rather than thermal production mechanisms as considered in previous analyses [42,

43].
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Event Type Electromagnetic Cosmic Rays GWs Neutrinos Event Name

Solar Flare X X - • SOL1942-02-28 [53]

Supernova X • • X SN 1987A [54]

NSM X - X • GW170817 [10]

Blazar X • - X TXS 0506+056 [55]

Table 3.1: Observed (X) and predicted (•) signals from astrophysical mul-
timessenger events.

Atomic clocks can detect ELFs that effectively alter fundamental constants [13] using

so-called “portals” through which ELFs can interact with standard model particles and fields

[12], as discussed in the previous chapter. The coupling strength determines, for a given

ELF intensity, the relative signal amplitude detected by the particular sensor. Astrophysical

observations and laboratory experiments set constraints on the coupling strengths between

ELFs and standard model particles and fields [12]. To estimate the potential astrophysical

reach of clock networks, we assume the largest coupling of ELFs to standard model particles

consistent with existing astrophysical and laboratory constraints and then calculate the

distance to a source for which the signal size is just detectable given an energy release in the

form of ELFs. Gravitational wave events can radiate large amounts of energy, a fraction of

which could be emitted in the form of ELFs. For example, black holes may be surrounded

by dense clouds of exotic bosons that could lead to ELF bursts coincident with gravitational

wave emission [41, 56–59].

3.2.1 ELF flux from an astrophysical event

Instead of invoking a specific model-dependent ELF production mechanism, given that we

are evaluating a generic search for exotic physics, we assume that some amount ∆E of the

total energy emitted by the astrophysical event is converted into an ELF. For concreteness,

we assume that the initial emitted ELF is a spin-0 field φ(r, t) described by the Klein-Gordon
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equation,
1

c2

∂2

∂t2
φ−∇2φ+

m2c2

~2
φ = 0 . (3.1)

This has spherically symmetric wave solutions,

φ(r, t) =
A0

r
cos (k0r − ω0t) , (3.2)

where A0 is the initial ELF amplitude, r is the radial coordinate, ω0 is the initial ELF

frequency, and k0 is the initial wavevector. Although we assume spherical symmetry, these

results are readily generalized. We are defining these quantities in terms of initial values due

to the dispersion such a matter wave will experience upon propagation (Section 3.2.3). Here

and below we are focusing on the fields outside the gravitational potential of the source,

with all the initial quantities referring to the values just outside the potential.

In order for the ELF burst to be correlated with astrophysical observations in electro-

magnetic or gravitational wave modalities, we must require that the field is ultra-relativistic:

ω0 ≈ ck0. To understand what the energy density of an ELF pulse near the Earth is, we

envoke the definition of the energy density for a free field:

ρ =
1

2c2
φ̇2 +

1

2
(∇φ)2 +

1

2

m2c2

~2
φ2 . (3.3)

In the vicinity of the center of the ELF pulse, the model Eq. (3.2) can be considered instead

with the amplitude near the Earth of A. The energy density is then

ρ =
A2

2r2

ω2
0

c2

[
sin2(ω0t− k0r) +

(
ck0

ω0

)2

sin2(ω0t− k0r)

+

(
mc2

~ω0

)2

cos2(ω0t− k0r)

]
+ O

(
1

r3

)
, (3.4)
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where we will neglect terms of order 1/r3. Taking the ultra-relativistic limit, ω ≈ ck �

mc2/~, and taking the time average, the energy density for a free spin-0 field is then given

by:

〈ρ〉 ≈ 1

2

(
A

r

ω0

c

)2

. (3.5)

To relate this to the total energy emitted into ELFs (∆E), we assume that the ELF pulse

has an initial temporal duration of τ0, a duration at the Earth of τ , and is well-localized,

cτ � r. The energy density is then

ρ ≈ ∆E

4πr2cτ
. (3.6)

Combining the two previous equations yields the ELF amplitude at the Earth,

A ≈ 1

ω0

√
c∆E

2πτ
, (3.7)

with A0 defined in terms of τ0. The detectable ranges of ELF frequencies ω and Earth burst

durations τ are set by the characteristics of the sensor network.

The radiated energy in the form of GWs from recently observed black hole mergers is a

fewM�c
2 [15, 16], whereas for recently observed neutron star mergers the radiated energy in

the form of GWs is & 0.025M�c
2 [17], where only a lower bound on energy release is obtained

due to uncertainty about the equation of state for the neutron stars. For the purposes of the

following sensitivity estimates, we assume that it may be possible to have ∆E ∼ M�c
2 of

energy released in the form of ELFs from a black hole merger and ∆E ∼ 0.1M�c
2 of energy

released in the form of ELFs from a neutron star merger.
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3.2.2 ELF burst delay

To correlate an ELF signal observed in the sensor networks to the known time of an astro-

physical event, we need to consider when we would expect to see an ELF signal relative to

the standard signal (e.g., an electromagnetic or gravitational wave). For simplicity, prompt

emission of the ELF from the source is assumed (coincident with, for example, the gravita-

tional wave emission). If the delay in time between the arrival of an electromagnetic signal

and the ELF signal is δt, the distance to the source of the event is R, and the center of the

ELF pulse travels at group velocity vg < c, then

δt = R

(
1

vg
− 1

c

)
. (3.8)

Since cδt is the light travel distance during the delay time and is much smaller than the

distance to the source (i.e., cδt/R� 1), we can rearrange this and approximate as

vg =
c

(1 + cδt/R)
≈ c
(

1− cδt

R

)
, (3.9)

which ensures that the ELF must travel at ultra-relativistic speeds. Searching for ELF

signals occurring within δt of the astrophysical event constrains the observable ELF particle

mass, since there is a relationship between vg and the Compton frequency of the field through

the dispersion relation. A search for ELFs, like many oscillating dark matter (DM) searches,

would probe the oscillation frequency of the field ω. The total energy of the particle traveling

with velocity vg is ~ω0 = γmc2 where γ is the Lorentz factor. Then, using the same

approximation as in Eq. (3.9),

ω0 =
mc2

~

[
1−

(
1 +

cδt

R

)−2
]− 1

2

≈ mc2

~

√
R

2cδt
. (3.10)
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To illustrate the effect of the delay on the observable particle mass m, Fig. 3.1 shows the

accessible parameter space for an ELF associated with the GW170608 binary black hole co-

alescence event [60] in terms of m and signal frequency ω/(2π). This assumes a requirement

that δt ≤ 10 hours, due to the limit of available data that we can search.

3.2.3 ELF burst duration and dispersion

An important point in analyzing the sensitivity of sensor networks to ELF pulses is the

dispersion of the pulse as it propagates from the source to the Earth. As noted above, if we

assume the ELF is a massive scalar/pseudoscalar field, it is described by the Klein-Gordon

equation, which yields the dispersion relation:

ω(k) =

√
(ck)2 +

(
mc2

~

)2

. (3.11)

This allows us to find an expression for the group velocity as a function of k, since vg(k) =

∂ω/∂k, so

vg(k) = c

(
ck

ω(k)

)
. (3.12)

Assuming for simplicity that at the source the generated signal is Fourier limited, then the

spread of frequencies ∆ω in the ELF signal is

∆ω ≈ 1

τ0
, (3.13)

As can be seen by differentiating the group velocity [Eq. (3.12)] with respect to the wave

vector k at the center of the pulse, the group velocity for different wavevectors is

∆vg ≈ ∆k
∂2ω

∂k2

∣∣∣∣
k0

≈
(
mc2

~ω0

)2
1

k0τ0
. (3.14)
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Since the ELF is ultra-relativistic, it is reasonable to make the approximation k0 ≈ ω0/c,

and so the duration of the ELF burst as detected on Earth would be

τ ≈ R∆vg
c2

≈ R

c

(
mc2

~ω0

)2
1

ω0τ0
. (3.15)

The characteristics of the clocks used in the ELF telescope sensor networks impose some

practical limitations on the observable values of τ and ω, and through Eq. (3.15), limits

the range of observable masses. To illustrate these limitations, Fig. 3.1 shows the accessible

parameter space for an ELF associated with the GW170608 binary black hole coalescence

event [60] in terms of particle mass m and signal frequency ω/(2π) assuming a requirement

that τ ≤ 10 hours.

To get an understanding of what a potential ELF signal might look like, we can take a

Taylor expansion of ω(t) around the time the center of the pulse arrives at Earth, ts = R/vg.

ω(t) ≈ ω(ts)−
∆ω

∆t

∣∣∣
ts

(t− ts)

≈ ω0 −
1

τ0τ
(t− ts) . (3.16)

The sign of the linear term comes from our knowledge that due to the group velocity rela-

tionship [Eq. (3.12)], higher frequencies will arrive first, and lower ones last. The validity of

this approximation follows from the results in Section 3.2.4. The pulse will then have the

approximate temporal form at the Earth,

φ(R, t) ≈ A0

R

√
τ0

τ
exp

(
−(t− ts)2

2τ2

)
cos

(
ω0(t− ts)−

1

2τ0τ
(t− ts)2

)
. (3.17)

Due to the time dependence on the frequency, the ELF signal will be seen as an “anti-chirp"

at a detector. The above model allows us to predict what this signal will look like if we

sample it in a similar manner to that of the proposed detector network, as demonstrated by
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Fig. 3.2.

3.2.4 Derivation of Matter Wave Pulse Propagation

Any type of wave will disperse upon propagation as long as the dispersion relation ω(k)

[Eq. (3.11)] has a nonzero second derivative with respect to k. This ensures that the group

velocity is a function of k. We can gain some insight into how this works for the case of

matter waves by deriving a more rigorous result than the treatment in Section 3.2.3. We

will assume the the waves are spherically symmetric and define φ(r, t) = u(r, t)/r so that

u(r, t) satisfies the 1D wave equation. The general solution to the 1D wave equation is an

integral over the Fourier amplitudes A(k) of each k-value wave component,

u(r, t) =
1√
2π

Re

[∫ ∞
−∞

A(k)ei(kr−ω(k)t)dk

]
, (3.18)

with the dispersion relation ω(k) for relativistic particles given by (3.11). The initial condi-

tions define the Fourier amplitudes [61]

A(k) =
1√
2π

∫ ∞
0

e−ikr
[
u(r, 0) +

i

ω(k)

∂u

∂t
(r, 0)

]
dr , (3.19)

with u(r, 0) and ∂u/∂t(r, 0) being the initial values near the source. For this example, we

will use initial conditions specified by [61] for a plane wave pulse with initial wave amplitude

A0, initial spatial width L0, and initial wavevector k0:

u(r, 0) = A0e
−r2/(2L2

0) cos (k0r) ,

∂u

∂t
(r, 0) = 0 . (3.20)
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These initial conditions result in two pulses traveling in opposite directions, but we will only

focus on the forward propagating pulse with the Fourier amplitude

A(k) =
A0L0

2
e−(L2

0/2)(k−k0)2 . (3.21)

We can approximate ω(k) as a Taylor expansion around k0 to second order as

ω(k) ≈ ω0

[
1 +

vg
ω0

(k − k0) +
L0∆vg

2ω0
(k − k0)2

]
, (3.22)

with the inserted definitions from Eq. (3.12) and Eq. (3.14). The second term above is of

the order (k0L0)−1 which reflects our requirement that the initial wavelength of the field is

much less than the initial spatial spread (i.e. λ0 � L0). The third term above is of the

order (cδt/R)(k0L0)−2 which like the preceding term and the approximation from Eq. (3.9)

is � 1, which justifies this approximation for ω(k). This allows the integral in (3.18) to be

evaluated in a closed form, and the final solution for φ(r, t) is

φ(r, t) ≈ A0

r

√
τ0

τ(t)
exp

(
−(t− r/vg)2

2τ(t)2

)
cos (ϕ(r, t)) . (3.23)

with time dependent temporal spread τ(t) defined as

τ(t) =

√
τ2

0 +

(
∆vgt

vg

)2

, (3.24)

and we have substituted L0/vg = τ0. From this we can see that at large t, the temporal

spread increases linearly with time as (∆vg/vg)t. The phase argument of the oscillatory part

is given by

ϕ(r, t) = (ω0t− k0r)−
1

2τ(t)2

∆vgt

vgτ0
(t− r/vg)2 +

1

2
tan−1

(
∆vgt

vgτ0

)
. (3.25)
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Figure 3.1: For the distance (≈ 109 ly) and source duration (≈ 1 s) of the
GW170608 binary black hole coalescence event [60] and a maximum delay
and duration of ≈ 10 hours, the dark grey shaded region represents the ac-
cessible parameter space for ELF mass and frequency for detection by the
GPS constellation. The dashed line is the constraint from delay [Eq. (3.10)]

and the dotted line is the constraint from dispersion [Eq. (3.15)].

We can see that (3.23) has a wave amplitude that depends on τ(t)−1/2, just as in the

estimate in Eq. (3.7). It can also be shown that the time derivative of (3.25) approximates

to Eq. (3.17) for r = R, near t = R/vg.

3.3 GPS as an ELF telescope

3.3.1 Clock Data Processing

The data given in a GPS time-series dataset represents the bias between a reference clock’s

phase and a network clock’s phase, measured in nanoseconds. The Earth-based station

measures the carrier phase of the satellite clocks at each sampling time (or epoch) and it is

then calculated relative to the chosen reference clock. The phase bias for each data point

for the ath network clock and jth epoch can be represented as an integral over the bias in
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Figure 3.2: Simulated example of an ELF signal in time-frequency space.
This reflects the model Eq. (3.17), with an ELF mass ofm = 10−20 eV and the
initial conditions δt = 10 hours, τ0 = 10 s, and R = 40 Mpc. These choices
of parameters allow this signal to exist in a frequency range accessible by the

GPS.DM sensor network.

fractional frequency excursions:

d
(0)
a,j =

∫ tj

0

(
δνa(t

′)

νa
− δνr(t

′)

νr

)
dt′ , (3.26)

where νa and νr are the ath and reference clock’s frequency respectively. As can be seen in

later sections, it will become useful to isolate the ath clock’s fractional frequency excursion.

If we preform first order differencing on these data, we can approximate the integral as a

single-term midpoint-based Riemann sum:

d
(1)
a,j = d

(0)
a,j+1 − d

(0)
a,j

=

∫ tj+1

0

(
δνa(t

′)

νa
− δνr(t

′)

νr

)
dt′ −

∫ tj

0

(
δνa(t

′)

νa
− δνr(t

′)

νr

)
dt′

=

∫ tj+1

tj

(
δνa(t

′)

νa
− δνr(t

′)

νr

)
dt′

≈
(
δνa(t̄j)

νa
− δνr(t̄j)

νr

)
T . (3.27)
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with t̄j = (tj+1 + tj)/2 being the temporal midpoint between the two epochs and T being

the sampling interval duration.

This still leaves the reference clock term, so we can further refine these data by defining

the weighted average over all clocks, d̄ (1)
j . Every clock dataset will contain the same reference

clock term above, so by averaging over all clocks in the network, we will sum over the

same reference clock contributing terms. The average will then approximately cancel out

contributions from the network clocks and leave only contributions from the reference clock,

d̄
(1)
j =

∑
a d

(1)
a,j(σa)

−2∑
a (σa)−2

≈ −δνr(t̄j)
νr

T , (3.28)

where σa is the standard deviation of the ath clock. We can then subtract this weighted

average from each of the network time series and divide by the sample interval to get

contributions from only the ath clock:

d
(1)
a,j − d̄

(1)
j

T
≈ δνa(t̄j)

νa
. (3.29)

This result now contains the intrinsic device clock frequency noise, linear clock frequency

drifts, and potentially new physics. This can be quite useful for determining and analyzing

frequency excursion signals that may only apply to one clock or a subset of clocks in the

network. As we are considering analyzing data after this stage of pre-processing, we denote

it simply as da,j .

3.3.2 Sensitivity of clock networks

We can now derive the sensitivity of a clock network to ELFs. From [20], the Bayesian

likelihood for a given model M of a deterministic signal sa,j to exist in the datastream

da,j is modeled by a multivariate Gaussian distribution. We will consider the data and the
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signal in frequency space due to our interest in an oscillating signal, so the index j will get

replaced with p which indexes the frequency after taking the discrete Fourier transform with

N data points. While the signal exists, Nw statistically significant sub-windows of data will

be treated separately, each with a central window time of tw, where a frequency model f(tw)

will be checked against the data (f(tw) = ω(tw)/2π from Eq. 3.16 for example). The form

of the frequency space likelihood distribution for this search is derived from [20],

L(d|M) =
1

det(2πC̃)

∏
p∈fp

exp

(
−1

2
χ2
p

)
,

χ2
p = 2

Nd∑
a

∣∣d̃a,p − s̃a,p∣∣2
C̃p

, (3.30)

where I have assumed p does not index the Nyquist or dc frequencies. Here, C̃p ≡ 〈ñpñ∗p〉

represents the one-sided power spectrum, or the diagonal elements of the power spectral

density matrix C̃ for a total number of network devicesNd. There are several approximations

we will make to simplify the likelihood in order to place order of magnitude estimates on

the sensitivity. First, this assumes a network of identical uncorrelated devices that have a

clock Allan deviation of σy ≡ σy(T ), with σy being the Allan deviation of the devices at

sampling time T . Second, we assume that the signal is much smaller than the noise of the

datastream at the limit of the device’s sensitivity to the signal (i.e. |sa,j | � σy). Third, we

will assume we can approximate χ2
p with its ensemble average, that is the average of χ2

p over

a large set of detector noise realizations. The ensemble average of χ2
p is expressed as

〈χ2
p〉 = 2

Nd∑
a

(〈∣∣d̃a,p∣∣2〉+ |s̃a,p|2 −
〈
d̃a,p

〉
(s̃a,p)

∗ −
〈
d̃a,p

〉∗
s̃a,p

)/
C̃p . (3.31)
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Since we assume white noise, C̃p = Nσ2
y . Within the above formula, we can recognize the

definition of the excess power statistic:

εap = 2

∣∣d̃a,p∣∣2
C̃p

. (3.32)

By construction, 〈da,p〉 = 〈da,p〉∗ = 0, and 〈|da,p|2〉 = Nσ2
y , so the ensemble average of the

excess power is 〈εa,p〉 = 2. It can be shown that the Fourier power of the signal (if it is

coherent sine wave of frequency fp) with linear wave amplitude B is |s̃a,p|2 ≈ (NB/2)2.

This is for a case where the Gaussian shape of the signal can be approximated by a step

function of width τ . Using this, 〈χ2
p〉 is:

〈χ2
p〉 = 2

Nw∑
w

Nd∑
a

(
1 +
|s̃a,w|2

Nσ2
y

)
∼ NwNdN

2σ2
y

(
B2 +

2σ2
y

N

)
, (3.33)

From Bayes theorem, we know that the posterior distribution on the wave amplitude B is

proportional to this likelihood. In the case of a uniform prior, we can compare the likelihood

to a general posterior distribution on the wave amplitude B, where

χ2 =

(
B

σB

)2

. (3.34)

We can then recognize that

σB ∼
√

2

NNdNw
σy . (3.35)

We will also assume we take statistically significant time windows (i.e. windows that do not

overlap) so that the number of time windows is

Nw =
τ

NT
, (3.36)
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for a signal duration τ and device sampling interval T . The noise floor for a network of

precision measurement devices is then

σy

√
2T

τNd
. (3.37)

3.3.3 Astrophysical reach of clock networks

Linear Coupling

An exotic scalar field φ can couple to atomic clocks based on linear scalar portals to standard

model particles

− Lint =

∑
f

γfmfc
2ψ̄fψf +

γα
4
F 2
µν

√~c φ , (3.38)

where mf (ψf ) are the fermion masses (fields) and Fµν is the Faraday tensor, with γX being

the associated coupling constants, whereX runs over the fundamental constants (α,me,mq),

with α being the fine-structure constant and the me ans mq are the electron and quark

masses. In this framework, the combination of
√
~c φ is measured in units of energy ([E]),

while the γX are measured in [E]−1. The coupling constants can also be defined in terms of

the effective energy scale ΛX = 1/|γX |. These interactions lead to the effective redefinition

of fermion masses and constants,

meff
f = mf

(
1 +
√
~c γfφ

)
,

αeff =
α(

1−
√
~c γαφ

) ≈ α(1 +
√
~c γαφ

)
. (3.39)
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With this effective change in fundamental constants, the fractional frequency shift in the

clock frequency νa can be expressed as

δνa
νa

=
√
~c
∑
X

κXγXφ = Γeffφ, (3.40)

where κX are the sensitivity coefficients, and Γeff is the effective field coupling constant

to the clocks. This fractional frequency shift can be related directly back to our data in

Eq. 3.29. For the purpose of estimating the GPS network sensitivity to ELFs, we assume

the coupling to α dominates (i.e., Γeff ≈
√
~c καγα).

From Eq. (3.7), we know the ELF amplitude to be

A ≈ 1

ω0

√
c∆E

2πτ
= B1r . (3.41)

The fractional frequency shift of the clock frequency νa, if we assume the coupling to α

dominates, is
δνa
νa

= Γeffφ ∼ καΓαφ . (3.42)

The definition of the electromagnetic gauge modulus de relative to the coupling constant Γα

is

Γα =

(√
4πG

c2

)
de . (3.43)

Plugging in φ = B1, we can then form the signal to noise ratio

SNR =
καde
ω0r

√
2G∆E

c3τ

/
σy

√
2T

τNd
. (3.44)
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Requiring an SNR ∼ 1 leads to an expression for the smallest detectable value of the

electromagnetic gauge modulus de with a fixed observation distance R:

|de| <
ω0σy(T )R

κα

√
c3T

G∆ENd
. (3.45)

If instead we pick |de| fixed by equivalence principle constraints [62], this can be rearranged

into the maximum discovery reach:

r ∼ κα|de|EPV

ω0σy(T )

√
G∆ENd

c3T
, (3.46)

Using the definition of the electromagnetic gauge modulus de = (Ep/
√

4π)γα [62] where

the Planck energy Ep =
√
~c5/G, we can obtain an expression for the coupling constraints,

|de| <
ω0σy(T )R

κα

√
c3T

G∆ENd
. (3.47)

where G is the gravitational constant, σy(T ) is the Allan deviation of the clocks, T is

the sampling interval of the clocks, and N is the number of clocks in the network. If we

use the equivalence principle violation constraints de < 10−3 [62], we can solve for the

maximum discovery reach. We use T = 1s throughout our analysis as it gives us the highest

currently achievable frequency range with the GPS network. If we pick optimal values for the

parameters in Eq. (3.47), this can function as a maximum sensitivity for the clock networks.

For Rb clocks, the sensitivity coefficient is κα = 2, and they have a typical Allan deviation

σy(1s) ≈ 10−13. This leads to an astrophysical range of ≈ 104 ly for a detector network

of 100 conventional devices, which is achievable with the incorporation of other satellite

positioning networks such as the European Galileo constellation. Laboratory clocks based

on Yb atoms have much better Allan deviation (σy(1s) ≈ 10−16 [63, 64]) and can reach

farther at ≈ 105 ly, encompassing the whole of the Milky Way. Potential future Th based
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nuclear clocks have a much higher projected sensitivity coefficient κα ≈ 105 [65], and an

Allan deviation σy(1s) ≈ 10−14 [66]. This will allow for a maximum range of ≈ 108 ly, which

is enough range to search for ELFs near the time of the known neutron star merger event

GW170817. These estimates are reflected in Table 3.2a.

Quadratic Coupling

For the case of quadratic coupling to ELFs, the interaction can be written as:

− Lint =

∑
f

mfc
2ψ̄fψf
Λ2
f

− 1

4Λ2
α

FµνF
µν

 ~c φ2 , (3.48)

where instead of coupling constants used before, we have parameterized the interaction in

terms of the effective energy scales ΛX . This interaction leads to effective redefinition of

fundamental constants similar to the linear coupling,

meff
f = mf

(
1 + ~c

φ2

Λ2
f

)
,

αeff =
α

(1− ~c φ2/Λ2
α)
≈ α

(
1 + ~c

φ2

Λ2
α

)
, (3.49)

which leads to the fractional frequency shift of the unperturbed clock frequency νclock,

δνa
νa

= ~c
∑
X

κX
φ2

Λ2
X

≡ ~c
φ2

Λ2
eff

, (3.50)

The main difference from the previous case is that the field model is squared in the inter-

action. Using the power reduction formula for cosine wave, the squared model yields two

terms,

φ(r, t)2 ≈ A2
0

r2

τ0

2τ
exp

(
−(t− ts)2

τ2

)[
1 + cos

(
2ω0(t− ts)−

1

τ0τ
(t− ts)2

)]
. (3.51)
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The first term is just a Gaussian, while the second term is an oscillation with Gaussian

amplitude. The frequency of the oscillation is easily comparable to the linear model, as the

central frequency and the slope are effectively doubled in the signal.

The statistics from the linear coupling section will remain the same, but the effective

quadratic signal amplitude B2 will be different,

~cA2

2r2
≈ ~c2

2r2ω2
0

∆E

2πτ
≡ B2 . (3.52)

Assuming again that the coupling to α dominates, we can form the SNR for φ2 = B2:

SNR =
~c2

4π

κα
Λ2
α

∆E

ω2
0r

2τ

/
σy

√
2T

τNd
. (3.53)

Requiring an SNR ∼ 1 and using Eq. 3.15 to substitute for τ , leads to an expression for the

largest effective energy scale for the quadratic interaction:

Λ2
α >

~2

2m

κα∆E

2πσy

√
cNdτ0

2Tω0r5
. (3.54)

If instead we pick Λα fixed by astrophysical constraints [67], this can be rearranged into the

maximum discovery reach:

r5/2 ∼ ~2

2m

κα∆E

2πσy(Λα)2
AC

√
cNdτ0

2Tω0
. (3.55)

If we compare the maximum Λα which we are sensitive to the astrophysical constraints

Λα > 10 TeV [67], we can see the amount of parameter space we are able to explore. The

sensitivity coefficients and Allan deviation for the clock types we consider are the same as

in the linear coupling. For the case of Thorium clocks, the maximum Λα is five orders of

magnitude above current constraints. This is outlined in Table 3.2b.
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3.3.4 ELF event rates

The starting point for estimating the ELF burst rate is to determine the number of rele-

vant astrophysical events in a given cosmic volume. In our case, we include binary black

hole mergers, binary neutron star mergers, and mergers of black hole with a neutron star,

although ELF bursts may also come from other sources. Recent studies [17, 68–72] based

on observed gravitational wave events estimate the binary merger rates may be as large

as γ(BH− BH) ∼ 200 Gpc−3yr−1, γ(NS− BH) ∼ 3000 Gpc−3yr−1, and γ(NS−NS) ∼

5000 Gpc−3yr−1. We conclude that it is reasonable to assume a generic binary merger rate

of γ ∼ 103 Gpc−3yr−1.

A cosmic volume of 1 Gpc3 contains roughly 109 galaxies, so based on the above estimate

for γ, the rate of binary mergers in the Milky Way is ∼ 10−6 yr−1. Increasing the sensitivity

of the clocks has a dramatic impact on detectable events: the cosmic volume probed is

proportional to the cube of the sensor sensitivity.

Binary merger event rates within the Milky Way are � 1/yr for the linear coupling,

but the quadratic coupling shows much higher sensitivity to ELFs. Future technologies will

also offer the possibility of much greater sensitivity and therefore greater astrophysical reach

(Table 3.2).
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(a) ELF Sensitivity for Linear Coupling

Clock Network Allan deviation Astrophysical reach Detection rate

σy(1s) (ly) (1/yr)

GPS 10−13 103 -

Optical lattice clocks (?) 10−16 105 10−6

Th nuclear clocks (??) 10−14 108 1

(b) ELF Sensitivity for Quadratic Coupling

Clock Network Allan deviation Highest Sensitive Coupling

σy(1s) (TeV)

GPS 10−13 103

Optical lattice clocks (?) 10−16 105

Th nuclear clocks (??) 10−14 106

Table 3.2: Estimated sensitivity to ELFs, astrophysical reach, and event
rates for existing, planned (?), and possible (??) sensor networks, where the
event rates assume an ELF energy release of ∆E ≈ M�c

2 and a generic
binary merger rate density of 103 Gpc−3yr−1. Table (A) uses electromagnetic
gauge modulus set by equivalence principle constraints de ≈ 10−3. Table (B)
gives maximum effective energy scale that we are sensitive to, which is to be

compared to the current astrophysical limits Λα ≈ 10 TeV.
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Chapter 4

Search Results

4.1 Introduction

After the discovery of a multi-messenger signal from a neutron star merger (NSM) announced

by the LIGO team in 2017 [10], there was growing interest in the GPS.DM group to search

for a signal that could be correlated to NSM events. Other gravitational wave events, like

black hole mergers, can also be of interest, but all of the black hole events announced prior to

this work do not have a well characterized source direction, as they are not expected to have

an electromagnetic counterpart. In contrast, the GW170817 NSM is known to have a source

in the galaxy NGC 4993 and had a coalescence time of 2017-08-17 12:41:04 UTC, allowing

for an easily falsifiable effect if one exists [10]. For this reason, this event was chosen to

carry out the first proof-of-principle search for ELFs using the GPS.DM Observatory. One

detail that is important to consider is that the GPS time-series data is normally sampled

with a 30 second interval, but this rate does not give much time or frequency resolution for

analysis, since the NSM lasted less than 1 minute in LIGO’s sensitivity range. As mentioned

before however, our group has shown that it is possible to generate GPS clock data with a

1 s sampling interval, which we used to carry out this first proof-of-principle search.

The goal of this search was to investigate the time-frequency space of each satellite’s
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clock time-series data in an attempt to find any anomalous features that may be corre-

lated to the gravitational wave event GW170817. In particular, we are interested in signals

that may be described by the ELF dispersion model [Eq. (3.17)]. This is similar to how

the LIGO collaboration represents and searches with pattern matching techniques for their

gravitational wave signals.

The first set of data produced was generated by Geoff Blewitt in the GPS.DM collabora-

tion in 2018 using the then recently released GipsyX software. Once this data was analyzed,

it became clear that these data were filled with oscillating signals with time-varying frequen-

cies for many of the clocks in the network. Several alterations to the data were attempted in

order to discern the potential cause of the signals, such as changing the reference clock. The

signals seemed to disappear or change when the reference clock was switched, which is why

we began using the data pre-processing method outlined in Section 3.3.1 to help remove the

reference clock contributions. After further investigation, some interesting signals remained

unexplained, and it soon became clear that the GPS.DM sourced data would not be suffi-

cient to discern the cause of these remaining signals. The analysis for this data is outlined

in detail in Section 4.3. After this the GPS.DM collaboration requested JPL to generate 1 s

data directly.

Correspondence with JPL lead to more optimal datasets being generated, which helped

answer some remaining questions about the signals. The data spanned a time period of 30

hours, 10 times longer than the previous dataset. We found that the signals were not just

an artifact of the GPS.DM data generation, and they seemed to repeat at a nearly daily

rate for a given satellite time-series. The analysis for the JPL sourced data is discussed in

detail in Section 4.4. Due to many satellites having unique daily repeating signals, we chose

to analyze a weighted network average time-series to investigate possible signals that would

affect every clock in the network. No obvious signals were found and we left limits to be

derived by future work.
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4.2 Data Processing

To determine if clocks in the GPS.DM network detected any ELF signals, we use an excess

power statistic , which is defined in detail in [73]. This method is based on the time-frequency

decomposition of the dataset, and highlights frequency excursion events based on the signal

power in a time-frequency interval compared to the detector noise. Excess power is the

optimal method for searching for events in situations for which only a rough idea of the

frequency and duration of the signal is known [73, 74], but can be generalized to include a

specified signal such as the ELF model in Section 3.2.3.

If we use some generic sampling rate 1/T for the clocks and apply our pre-processing

method from Section 3.3.1, we get a resulting pseudo-frequency time-series from a clock

denoted da,j . Following the treatment in Ref. [73], we consider each point as comprising

contributions from both a potential signal sa,j and the detector noise na,j ,

da,j = sa,j + na,j . (4.1)

We partition the data into segments of discrete time and frequency “tiles”. Our goal is

to quantify the power contained in each segment of the data due to only noise, and due

to possible contributions from ELF signals. We assume that measurements made before

the electromagnetic or GW signal associated with the astrophysical event were detected on

Earth have vanishing ELF signal content and that data taken after the EM detections may

contain ELF signals. We define a time width for each tile, δτ = NT and parse the data

from each clock into segments of length N . The center of each segment is then interpreted

as the time of occurrence of the frequency tiles. It should be noted that N is chosen to be an

even number to ensure that there is a well-defined Nyquist frequency, so there is no epoch

directly in the center of this window. The center time is then the time directly between the

two middle epochs, and we choose an epoch index w that represents the epoch immediately
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following the time in the center of the segment. This means that the center time of the

sub-window is a half epoch behind the time that da,w was sampled. The Fourier transform

of the data in this window for the kth frequency index is defined as [20]:

d̃a,k =
N−1∑
j=0

da,je
2πijk/N . (4.2)

The frequency index k here goes from 0 to the Nyquist frequency 1/(2T ). For every ath

clock and window off-center epoch w there is N/2 + 1 unique frequencies in this transform.

It should be noted that the total time window in Fourier space is decreased by N epochs

because both the beginning and end of the window can only fit a sub-window with a center

epoch at N/2 epochs away from the end of the time-series data. We define the excess power

in each time-frequency tile as

εa,k,w = 2
|d̃a,k,w|2

C̃a,k
, (4.3)

where C̃a,k is the one-sided power spectrum of the noise of each clock via C̃a,k = 〈ña,kñ∗a,k〉.

Dividing the data power in each tile by C̃a,k effectively normalizes the power spectrum, so

that each frequency component of the statistic has the same expectation value.

For detectors characterized by stationary Gaussian noise, the excess power εa,k,w is a

random variable drawn from a chi-squared distribution with probability density function

fχ2(ε, V ) =
εV/2−1e−ε/2

2V/2Γ(V/2)
, (4.4)

which has V = 2δfδt degrees of freedom [73]. The excess power in tiles containing an actual

signal will be larger than expected; signal containing tiles will consequently be located in

the tail of an excess power histogram.
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Figure 4.1: Small section of the GPS.DM sourced 1 s interval file structure.
The first row is the file name, the second row is the UTC time of the first
epoch of data given, the third is the UTC time of the last epoch of data
given, the fourth row gives the time difference between GPS time and UTC
time in seconds (due to leap seconds), and the fifth row gives the name of the
reference clock. The next rows are column titles and then the data stream.
The first column specifies satellite or earth-based clocks, the second gives the
clock name (SVN for satellites), then the week number, the day number, the

epoch of the day, the clock bias value, and finally the formal error.
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4.2.1 File Structure Conversion

There are several details to keep in mind before we can begin the analysis. What we desire

is a table of values where each clock is a row and each epoch is a column, but the JPL files

were sorted by epoch number (see Figure 4.1), that is to say that for each data sample, there

is a table of values for every clock. There may also be missing data points for certain clocks

at each epoch.

To mitigate these problems, for every missing data point, a new row is created and zero

is written as a placeholder in the bias column. For now, we don’t include analyses for any

clocks that have zeros anywhere in the window after this processing. We also make sure that

all of the clocks that we analyze are common to all of the files, dropping any that are do

not appear in every dataset. Now that the file has a predicable length due to this buffering,

we keep only the clock name, epoch number, and bias value as information and sort it into

a table of values where the rows are the epoch numbers and the columns are the specific

clocks, with each element being the bias for each clock and epoch.

4.3 Results from GPS.DM Sourced Data

Our first attempt to analyze GPS clock frequency data started with the production of

1 Hz sample rate GPS time-series data with the GipsyX software package. Five files were

generated, each spanning 3 hours, and each file starting at 11:00 UTC spanning the dates

2017-08-14 to 2017-08-18 (GPS days 19621-19625). The fourth file in the list corresponds

to the GW170817 event which has a UTC merger time of 2017-08-17 12:41:04 UTC. The

purpose of the files on different days other than the NSM event is get a good average of the

power spectral density of the clocks and to compare the files for similarities. For this initial

attempt, it was only possible to generate files of ∼ 3 hour duration for a total of 31 satellites.

Here, we only analyzed data from satellite clocks due to many of the earth-based station



44

clocks not being well-behaved in frequency space. Many of the Earth-based clocks have

unique trends and perturbations that do not correlate with other clocks (example shown

in Figure 4.2 in contarst to Figure 4.3). Some even have noise profiles that are clearly not

white, even after differencing. For this reason, we do not include them in the analysis.
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Figure 4.2: Example of a badly-behaved Earth-based clock (identifier
HARB). There are many perturbations across all frequencies in the middle of
the window that are so large that the noise of the clock is lost in the plot. The
maximum normalized power is also very high compared to the well-behaved
clock. These perturbations are unique to this clock, and very likely a glitch

in this specific time-series.

As discussed before, our data analysis method produces a “power chart” that represents

the time-frequency space of a specific satellite clock’s pseudo-frequency. We have left out

clocks that have missing data points within any of these datasets, which leaves 20 satellite

clocks.

Several of these charts have interesting signals within them. Figure 4.4 depicts a satellite

with identifier GP55. There is a linearly decreasing signal that repeats each day, with a

repetition time near that of the orbital period of the satellite. What is curious about this

is that the formal error that describes how well the solution was fit also repeats near this

rate. This is likely to do with the satellite moving over different parts of the Earth, where

there may be more or less stations visible.
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Figure 4.3: Example of a Earth-based clock with non-white noise (identifier
KOKB). The the noise seems to get quieter as the frequency is decreased,
however there are no obvious glitches or easily identified perturbations in the

spectrum.
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Figure 4.4: Five plots that represent a sample of the time frequency space
taken from one satellite with identifier GPS55. There is exactly 24 hours of
time in between the start of each plot, with a common start time of 1:38:20
UTC. There is a repeating decreasing frequency signal, that builds in ampli-
tude before maximizing at about 0.15 Hz. The time difference between each
successive amplitude maximum of the signal is about 250 seconds less than

24 hours, which is close to twice the orbital period of this satellite.
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The search for ELFs in this case is severely limited as there is only a small amount of

time immediately following the merger event in order to constrain the velocity of the field.

This also limits the maximum temporal duration of the wavepacket that we can observe.

Despite this, our search found interesting frequency excursion signals. Some of these signals

appear to match what might be expected from the ELF dispersion model from Fig. 3.2.

As a first sanity check we looked at the data generated on the days before and after the

GW170817 event. We found that many of these signals seemed to repeat on a cycle with

period near that of a sidereal day. An example of this can be found in Figure 4.4. Physical

intuition about the GPS constellation led us to suspect that the signals might repeat at a

period matching that of the satellite orbital period of about half a sidereal day. It might

also cycle at the period of terrestrial position repetition, which is 2 orbital periods, or near

1 sidereal day. Due to the limited amount of data we generated on this first attempt, we

could not discern if the signals repeated at a rate faster than a sidereal day or at a sidereal

day. This spurred our collaboration with JPL, where we requested 1 Hz data files with full

30 hour duration.

4.4 JPL Sourced Data

With the goal of distinguishing the repetition time of the frequency excursion events outlined

in the previous section and to make sure the data was reproducible, we collaborated with JPL

to produce 1 s data for longer stretches of time. We found that the data was in agreement

to the previously generated data.

We received two separate datasets from JPL, each spanning 30 hours. Each file com-

pletely spans one day, with a start time of 21:00 UTC the previous day and and end time

of 3:00 UTC the following day. We requested the dates 2017-08-17 and 2017-08-16 so that

we would have enough time span to discern the signal repeat rate mentioned above. These
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first datasets used reference clock AMC2, but we found that this reference clock was badly

behaved during this time period. We then requested new datasets be generated with ref-

erence clock BRUX, which we found to be much better behaved. This is demonstrated by

Fig. 4.5.
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Figure 4.5: Representation of the AMC2 and BRUX reference clocks in
time-frequency space. These plots, both spanning the date 2017-08-17 and
starting at 2017-08-16 21:00 UTC, are very different as the AMC2 reference
clock contains many time-varying frequency signals. Changing the reference
clock to BRUX removes all of the signals besides a glitch near the 20 hour

mark, suggesting that AMC2 is badly behaved.

Every clock in these datasets seemed to have a unique repeating signal, which is in

contrast to what would be expected for an ELF signal that affects all of the clocks at once.

Fig. 4.6 shows an example of a repeating signal for satellite clock GPS58. The signal repeats

near the a period of a sidereal day, which suggests that these signals have an origin that

depends on what terrestrial stations are in view to the satellite, as this repeats with this

period. The other analyzed satellite plots can be found in Appendix A.
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Figure 4.6: Emphasis of repeating signals in the satellite clock GPS58. The
time-dependent frequency signals near the 0 hr and 25 hr marks have the same

general form and repeat near 2 orbital periods of the satellite.

To ensure our analysis does not include these repeating signals, we then took a network

average of the data. The ELF model we have outlined should affect every clock in the

network in the same way and at the same time, so this average should make any common

signals much more obvious. The network average plot is shown by Fig. 4.7. We found that

this network average has a distribution of excess power values that matches the probability

distribution one expects for Gaussian white noise, which is shown in Fig. 4.8.
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Figure 4.7: The network average plot. There does not appear to exist any
obvious frequency excursion events consistent with the ELF model. There
are some vertical lines here, near the 5 hr and after the 15 hr marks, but these

signals correspond to data outliers.

Within the network average, we observed no statistically significant frequency excursion

events consistent with the ELF model. This is shown by the excess power histogram Fig. 4.8
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Figure 4.8: Histogram showing the comparison of excess power values in
Fig. 4.7 to the expected probability density distribution. The distribution of

excess power values matches white noise very well.

which is inconsistent with what would be expected by a signal-containing dataset. Rigorous

statistical limits are left for future work, as longer stretches of data can set much more

competitive limits and this 1 s data needs further characterization.

4.5 Future Work

The analysis performed in this work is purely a proof-of-principle, since much of it is based

on 1 s sampling interval GPS data that is state-of-the-art. We focused on only one event

in this work, but there does exist about 20 years of archived data that could be searched

in a similar manner. In particular, known events such as gamma ray bursts, fast radio

bursts, super novas, and solar flares could be correlated with the sought ELF events. One

challenge to this is the repeating nature of the clock data signals found in the previous

sections. One possibility to mitigate this is to remove auto-correlations at the repetition

rate for each clock. This will allow us to search for signals that do not repeat at the rate
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we have identified. We can also mitigate the problem of of missing data points for some

time-series by implementing a frequency analysis based on periodograms, which mimics a

least squares fit to wave-forms instead of using the Fourier transform. With these future

points, there is much left to explore using GPS.
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Chapter 5

Conclusion

In this work we have demonstrated the ability of global networks of precision measurement

devices to detect ELFs that may be emitted from high energy astrophysical events, poten-

tially making them a new messenger in the growing field of multimessenger astronomy. We

discussed using the atomic clocks that make up GPS as such a network, along with future

networks of atomic clocks, and we characterized how ELFs may interact with them. We

have developed a model for the time evolution of pulses of ultrarelativistic matter waves,

and estimated the sensitivity of GPS and future networks of atomic clocks to detect ELFs.

We have shown that quadratic couplings to ELFs have great potential for detection with

GPS and that future networks of atomic clocks have even greater sensitivity. This work has

also uncovered previously unknown time-frequency behavior of the GPS satellite clocks, as

our analysis is the first to be preformed on high-rate GPS clock data. While we have shown

that these time-frequency signals are not likely caused by ELFs, their origin still remains a

mystery and certainly invokes questions about the behavior of the GPS network. A com-

plete characterization of the clock behavior we have discovered could be used to improve the

modeling and quality of GPS. The search for ELFs based on this event was limited in this

case due to the limited data available, but this search can be extended to times much longer

after the GW170817 event itself to consider ELFs of slower (though still ultra-relativistic)
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velocities. Future work in the search for ELFs can include analysis at known times of past

astrophysical events, such as gamma ray bursts, black hole mergers, and solar flares.
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Appendix A

JPL Sourced Data Plots

This section presents time-frequency plots of the excess power for each satellite with a

complete dataset. The start of each file is 2017-08-16 21:00 UTC and it ends at 2017-08-18

3:00 UTC.
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