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Abstract

The GPS.DM group works to find dark matter using the GPS satellite constel-

lation. Should a dark matter object, of some shape, pass through a satellite,

it may feebly interact with atomic clocks on board, briefly changing the clock

frequency. To test this hypothesis, the group takes time data from the Jet

Propulsion Laboratory and analyzes it for variations in apparent time between

satellite clocks and a reference clock. Here I expand upon the Bayesian statisti-

cal analysis used in previous work to estimate the strength of these interactions.

I work with a set of multiple time windows and combine them such that a to-

tal posterior probability is generated. This total posterior probability contains

information about the event magnitude of a time window versus surrounding

windows. This method increases the network sensitivity in proportion to the

square root of number of windows used.
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Chapter 1

Introduction

The existence of dark matter (DM) in the universe is well known, but its exact

nature remains elusive. While DM is commonly observed at galactic scale in

examples such as galactic rotation curves, gravitational lensing, and structure

formations, [1] there is yet to be extrapolation to laboratory scales [2]. Exper-

iments to detect DM at terrestrial scale are regularly proposed [3] and call for

extremely sensitive detection. However, directly detecting DM is problematic

by virtue of the unknown nature of its constituents.

Indirect detection is often proposed instead, which attempts to find sec-

ondary effects caused by DM. Many models are proposed in indirect detection

of DM, but of interest here is the model of ultralight fields such as axions [4].

Ultralight fields may form stable topological defects (TDs) such as monopoles,

strings, or domain walls [5]. Detecting these fields directly is not achievable for

the hypothesized mass (m ∼ 10−23eV ) so instead experiments to detect their

produced phenomenology are proposed [1]. Examples include using ground-

based gravitational-wave interferometers [6], accounting for plasma effects with

a photon [7], or using pulsar timing arrays [1].

Direct detection is hypothetically plausible for large scale detectors, such as

the case here where we use the GPS constellation as the detector. This allows

us to assume the fields’ masses are at a much higher scale comparable to other
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direct detection experiments. This is only possible so long as the DM object is

a macroscopic field such as a topological defect [8].

Topological defects (TDs) may be formed during the cooling of the early

universe through a spontaneous symmetry breaking phase transition [9, 10].

Searches for TDs have been performed via their gravitational effects, including

gravitational lensing. Limits on TDs have been placed by Planck and BICEP2

from fluctuations in the microwave background. The past several years have

brought proposals for TD searches via their non-gravitational signatures [5].

Here we focus on the non-gravitational interactions to detect TDs as DM passing

through GPS satellites.

GPS satellites track time with on-board atomic clocks. Using the data pub-

licly available from the Jet Propulsion Laboratory (JPL), we can analyze the

time as measured by said clocks to search for DM-induced transient variations of

fundamental constants [5, 8]. Specifically, we track the time differences between

a network of satellite and station clocks. In effect this makes the GPS satellite

constellation a ∼50,000 km-aperture DM detector. For an Earth-sized object

the mass scale is ∼ 10−14eV which is in line with other DM searches [5].
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Chapter 2

Clumpy Dark Matter

Models

Macroscopic objects may form from ultralight DM fields due to self-interaction

in the dark sector. TD’s are an example of such “clumpy” objects which may

also take various dimensionalities such as monopoles (0D), strings (1D), or do-

main walls (2D). Other examples of macroscopic DM candidates include Q-balls,

solitons, and axion stars, but for concreteness we are focusing on topological de-

fects.

Inside the defect, the amplitude of the DM field A and the average energy

density of the defect is related by ρinside = A2/(h̄cd2) where d is the width or

spatial scope of the defect (we use the convention where the field has units of

energy) [8]. The DM object width d is treated as a free observational parameter

and, for TD models, may be linked to the mass of the DM field particles mφ

through the healing length which is on the order of the Compton wavelength d =

h̄/(mφc). Local DM energy density can be described by A and d by assuming

that the defects saturate the local DM energy density,

A2 = (h̄c)ρDMd
2 T
τavg

, (2.1)

where τavg ∼ d/vg is the average duration of the object crossing through a
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point-like instrument and T is the average time between subsequent DM objects

with the device [5]. Local dark matter density ρDM ≈ 0.4 GeV cm−3 is taken

from direct measurements and relative velocities of TD objects vg ∼ 300 km s−1

according to the standard halo model.

As per previous work of GPS.DM [11], we assume a quadratic scalar portal

to describe non-gravitational interactions,

−Lint =

(
Γfmfc

2ψfψf + Γα
F 2
µη

4
+ . . .

)
φφ∗, (2.2)

where mf are fermion masses, φ is the scalar DM field (in units of energy), ΓX

are coupling constants to quantify the DM interaction strength, and ψf and Fµη

are the standard model fermion fields and the electromagnetic Faraday tensor,

respectively. The index representing standard model fermions, f , from above

equation are implicitly summed over. The Lagrangian leads to redefinitions of

fundamental masses and coupling constants,

αeff(r, t) = [1 + Γα|φ(r, t)|2]α, (2.3)

meff
f (r, t) = [1 + Γf |φ(r, t)|2]mf , (2.4)

where mf are the nominal values of fermion masses and α is the electromagnetic

fine structure constant. The coupling constants Γ have units of [Energy]−2 and

we define the effective energy scales γX ≡ 1/
√
|ΓX | with X = α,mf .

The observable atomic frequency changes induced by DM objects can be

linked to the variation of fundamental constants, and therefore the DM field

parameter, described by Eqs. (2.3) and (2.4). For a particular clock transition,

δω(r, t)

ω0
=
∑
X

κXΓX |φ(r, t)|2≡ Γeff |φ(r, t)|2, (2.5)

where ω0 is the nominal clock frequency, X runs over relevant fundamental

constants, and κX are dimensionless sensitivity coefficients. For convenience,

we introduce the effective constant Γeff which depends on the specific clock type.

Linear combinations of the coupling constants are noted in Refs. [11, 12].

This thesis focuses on the “thin” domain wall DM signal. It retains the

main features of other more complicated types of DM “clumps”, but gives an
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analytically treatable signature. The basis of this signal model detailed more in

Ref. [5]. Of important note is how we distinguish “thin” from “thick” signals

based on sampling rate (which must be finite, of course). If interaction time

with the device (the entire GPS constellation in this case) d/vg is shorter than

the sampling interval τ0, then the exact arrival time of the DM clump is not

resolved, nor is its shape. We then say it is “thin” for observational purposes

when d� vgτ0.

The value (in units of time) of the effective coupling relates to the maximum

DM-induced clock phase signal accumulated h = δωmax/ω0 × τ by

h = A2Γeffτ, (2.6)

τ = d/v⊥ being interaction time of a wall moving at velocity v through an

individual device. Strictly speaking, for domain walls the relevant component

of velocity is only the component normal to the wall, v⊥. A “thin” wall requires

that τ must be less than the sampling interval τ0 [12].
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Chapter 3

GPS.DM Project

The work of the GPS.DM group is to find DM using the GPS satellite constel-

lation. The DM model of interest is self-interacting macroscopic objects such as

TDs or Q-balls [12]. A DM constituent with a velocity according to the stan-

dard halo model [5] may pass through the GPS satellite constellation and feebly

interact with the on-board clocks. This DM constituent may interact with stan-

dard model particles to change fundamental constants which then change the

frequencies of atomic clocks. By searching for variations in the frequencies of

atomic clocks it may be possible to sense the DM as a transient perturbation in

the constellation [12].

Previous analysis done by the GPS.DM focused on finding large DM signals

well above the instrument noise. Using the data publicly available by the Jet

Propulsion Laboratory (JPL), new limits were placed on DM couplings that

were orders of magnitude more stringent than previous astrophysical limits [8,

12]. No DM signatures were found, however. The next step, then, is to do the

analysis for signals within the magnitude of instrument noise.

A desiderata of network sensors in Ref. [12] supports why the GPS constel-

lation is used for this analysis, rather than a single atomic clock or multiple

clocks of one satellite. Based on the standard halo model, a network of sensors

detecting a DM object sweeping through at galactic velocities (vg ∼ 300 km/s)
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Figure 3.1: A visualization of a domain wall object passing through the GPS con-

stellation. Red satellites are effected by the domain wall and experience a time bias

compared to the gray satellites that the domain wall has yet to pass [5].
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must have a sufficient sampling rate to track the propagation. This enables

reconstruction of the geometry important to the matched-filter technique im-

plemented by the GPS.DM group.

As stated in Ref. [12], the matched-filter technique (MFT) is used to ap-

proximate some value h of a DM signal hidden in GPS data using a signal to

noise ratio (SNR) as a detection statistic. Basically, using a predefined signal

shape from a model templates are made within a range of possible shapes for

an unknown signal strength. One could think of the MFT as a technique that

maximizes an overlap between the templates and the data stream. This max-

imization is done with the help of a matched-filter statistic, such as a SNR.

However, it is not usually the value of the SNR alone that determines the level

of overlap, but rather the value of the SNR compared to a threshold [12]. MFT

is one of two methods that will be used to search for DM signals closer to instru-

ment noise. The second method of Bayesian statistical analysis was previously

done in Ref. [11] and is expanded upon hereon.
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Chapter 4

Bayesian Statistical

Analysis

Bayesian analysis is a powerful method in cases of model selection and param-

eter estimation. The fundamentals of the analysis involve taking some set of

hypotheses Hi with data D and prior information from a proposition I and

write the probability for this as p(Hi|D, I) [13].

The probability can then be manipulated via Bayes’ theorem to change per-

spectives,

p(Hi|D, I) =
p(Hi|I)p(D|Hi, I)

p(D|I)
, (4.1)

where we now obtain prior information p(Hi|I) that doesn’t depend on D, with

posterior information p(Hi|D, I). The term p(D|I) is the global likelihood for

the entire set of hypotheses, and p(D|Hi, I) [13].

Parameter estimation comes from creating a probability distribution func-

tion that is the posterior. That is to say, Bayesian analysis does not give a single

value of what a tested parameter could be, instead it gives a range with a most

likely candidate. We can also take a range of allowed values with a credible

interval, defined by ∫
R

dθ p(θ|D,M) = C, (4.2)

14



where θ is the entire set of hypotheses and C is a probability content (e.g.,

C=.95 or 95%).

For GPS.DM, θ is the vector incident velocity of the TDM v, the incident

time of arrival for the DM object t0, and the amplitude of the signal in the bias

data h. In this work we desire to find the credible interval for some nonzero

value of a DM event’s amplitude h, such that zero is not included in the range.

A credible interval such as this would guarantee that an event has taken place

within the GPS satellite clocks.
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Chapter 5

Viewing Window

Likelihoods

This begins with a model M we want to test. The model is an explanation for

data, Dk, with a time window centered on epoch k. The epochs for this research

are defined as 30 sec sampling intervals at which JPL calculates data. The time

window itself contains a set of data from individual epochs. The posterior

requires knowledge of the model, I, which is used for parameters other than our

signal amplitude, h. From the set of all signal specific parameters θ implicit to

Dk, we can express the marginalized posterior. This posterior is for a single time

window and can be used as the likelihood for a posterior of multiple windows.

This will be referred to as Wk(h) for the likelihood of an event occurring (I will

say a window is effected, or an event is ‘caught’ to keep the physical situation

in mind) and W j for an event not occurring

Wk(h) = p(Dk|M, I) =

∫
dθ p(θ|I)L (D|h sk(θ), I) (5.1)

≈
NMC∑
i=1

L (D|h sk(θi), I)

W j = p(Dj |M, I) = L(Dj |h = 0, I) , (5.2)
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where the approximation is using the Monte Carlo numerical integration method.

The term sk(θ) is a data template attempting to match to D. It is better shown

in the second line where the Monte Carlo integration is indexed for the number

of templates created to attempt a best match of D. The prior term disappears

in the approximation due to inverse transform sampling. The method of inverse

transform sampling is to take the inverse of a known distribution, in this case

the prior, and use a uniformly spaced grid drawn through the known distribu-

tion to concentrate points to where the distribution is larger. In effect this will

implicitly remove the prior as uniform points are transformed into points of the

prior distribution [12]. We assume the likelihood to be a Gaussian distribution,

L (D|h ski , I) = C1 exp

[
−1

2
(dk − hski)

T
E−1 (dk − hski)

]
, (5.3)

where E−1 is the inverse covariance matrix, which determines the variances of

clocks in relation to one another, and C1 is a normalization constant. It will

be written as E−1 = H to save space. The vector dk is the time bias data

for a window centered on k, and ski is the model predicted time bias data.

The double index on Ski is to denote the number of templates i used in the

Monte Carlo summation for a specific epoch k. Now consider the likelihood

with substitutions,

ĥk =
dk

THski
ski

THski
,

σ2
ki =

1

ski
THski

,

where ĥk is the signal strength that maximizes the likelihood and σ2
ki

is the

template-specific likelihood variance. The likelihood term is now easily separable

between the constant terms and the distribution term,

L (D|h ski , I) = C1 exp

{
−1

2

(h− ĥi)2

σ2
ki

+
ĥi

2

2σ2
ki

− dk
THdk
2

}
. (5.4)

Thus the posterior is,

Wk(h) = C2

NMC∑
i=1

exp

{
−1

2

(h− ĥi)2

σ2
ki

+
ĥi

2

2σ2
ki

}
, (5.5)
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where C2 is the normalization which has also absorbed the second term in the

exponential which is constant in respect to this sum.

In Ref.[12] there is brief discussion on the sensitivity of the search propor-

tional to the number of windows considered. If the events are assumed to be

Poisson distributed in time, then there is some average time between events T .

For the 20 years of archival GPS data there would be an expected number of

events NE = (20 years)/T . Then if multiple windows are used add up to the

total 20 year time spam and events are assumed to be non-overlapping, then the

detection statistic for the matched-filter technique will increase by a factor of
√
NE while the variance remains the same. Therefore the sensitivity increases

by the same factor of
√
NE .

This increase in sensitivity is related to the work here. While Ref. [12] only

makes note of this, the increase in time scale is the most important factor to

potentially increasing the sensitivity of a search.
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Chapter 6

Likelihood for a Time Series

Now to consider the posterior of multiple windows. Wk(h) is the posterior for

a single window, so the same expression will be used in multiple windows. The

question is then how to combine multiple terms of Wk(h). The options are

taking the sum or product of every window. We need to consider what physical

meaning each option has. A sum of all window probabilities will find the greatest

probability from any present maximum. A product of all windows will find the

greatest probability only if every window is at a maximum. From this, consider

the product of all Wk(h) shown also in Table (6.1),

W1(h) ∗ W2(h) ∗ W3(h) ∗ W4(h) ∗ · · · ∗ WNW
(h) ,

pNW (h|D, I) = C3

NW∏
k=1

Wk(h) ,

k 1 2 3 4 · · · NW

A X X X X · · · X

Table 6.1: A window’s centered epoch k along the columns, with the window

set A for rows. The check marks reference which windows have events, in this

table it is every window.
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k 1 2 3 4 · · · NW

A1 X × × × · · · ×

A2 × X × × · · · ×
...

ANW
× × × × · · · X

Table 6.2: A window’s centered epoch along the columns and possible posterior

distribution Wk(h). A check mark is to reference where an event should be.

where pNW refers to the probability of NW total windows containing an event.

To say this is the posterior, it is necessary to consider every window contains an

event because when this is not the case there are different combinations to test.

Taking the sum of these various combinations will find the greatest probability

for when at least one correctly matches the data.

Consider the simplest case, for when only one window in the time series

catches an event. The event is not unique to which window is hit, so we check

every possible window as if it were the only one effected. Referring to Table 6.2,

the columns are still a product while the rows sum together, such that,

p1(h|D, I) ∝ A1 + A2 + · · · + ANW
,

A1 = W1(h) ∗ W 2 ∗ W 3 ∗ W 4 ∗ · · · ∗ WNW
,

p1(h|D, I) = C3

NW∑
k

Wk

∏
j 6=k

W j

 ,

where we are only looking at the posterior for a single window catching an event.

The next logical step is having an event present in two windows. It is

important to understand how the combinations are represented. The product

will include a second indexed W (h) term. The sum now changes, as adding a

second index will cause duplicate cases to pop out. This is easiest to understand

as we are taking a combination, not a permutation. The difference being in a

combination it does not matter which window is effected in which order, as there
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k 1 2 3 · · · NW−1 NW

A1 X X × · · · × ×

A2 X × X · · · × ×
...

ANW
× × × · · · X X

Table 6.3: The combinations available for two windows catching events.

is no physical order. The current model and analysis of GPS.DM assumes that

only one DM event passes through the system, as only one event can be resolved

for any window regardless of signal amplitude. Thus, one window cannot be

effected by ‘two’ events1. To make this posterior a combination, consider one

index kept lower than another for every step of the sum, k1 < k2,

p2(h|D, I) ∝ A1,2 + A1,3 + · · · + ANW−1,NW
,

A1,2 = W1(h) ∗ W2(h) ∗ W 3 ∗ W 4 ∗ · · · ∗ WNW
,

p2(h|D, I) = C3

NW∑
k1<k2

Wk1(h)Wk2(h)
∏
j 6=k

W j

 .

This posterior for two event windows has many more calculations compared

to the single event window, but the general form the equation takes has only

included one extra indexed term to the product and an index related by an

inequality to the sum. At first it seems odd to use this inequality, but without

it (say using an additional sum instead) there will be extra calculations that

shouldn’t exist. The indexed windows are in order of the epoch they’re centered

on, so it does not mean anything to order them differently for calculations.

This can easily be generalized to any specific number of windows n containing

1This posterior is specifically for two windows catching the event, so if a sum includes

matching indices it would instead describe the previous case for a posterior of a single effected

window.
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an event,

pn(h|D, I) = C3

NW∑
k1<k2<...<kn

 ∏
k1,k2,...,kn

Wk(h)
∏
j 6=k

W j

 . (6.1)

It is important to remember that this posterior calculated is only a posterior

of n specific windows catching an event. We can clean up the calculations by

dividing through with the product of all W and absorbing the remnants in the

normalization constant C4,

pn(h|D, I) = C4

NW∑
k1<k2<...<kn

 ∏
k1,k2,...,kn

Wk(h)

W k

 . (6.2)

Now to make a posterior for every possible number of effected windows, we

sum through all n. Once again a sum is used to verify that any one of the

possible combinations matches a tested value of h. Therefore, the posterior for

an observation period is,

p(h|D, I) = C5

NW∑
n=1

 NW∑
k1<k2<...<kn

 ∏
k1,k2,...,kn

Wk(h)

W k

 . (6.3)

To round this back to the work of the GPS.DM group, this calculation is directly

doable for a small number of windows, but rapidly becomes too large to compute

with increasing windows.
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Chapter 7

Example Construction

Now that we have developed a statement for the posterior, we want to check

expected results. We can do this by creating an example scenario where we

make simplifying assumptions:

• There is one white noise clock

• There is no reference clock

• There is only one signal template

These assumptions will cause previous vector and matrix variables to be scalar.

These include,

s = 1 ,

H =
1

σ2
,

dk = nk +
∑
q∈{q}

h̃δkq .

Here s is normally the signal template which is a vector containing ones and

zeros to correspond to clocks catching an event or not, so consider it to always

be one. H is the inverse covariance matrix, but with only one clock it is simply
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the inverse variance. From the assumption of a white noise clock, the term for

noise contribution, nk, will become an average of zero. The term
∑
q∈{q} h̃δkq

refers to windows that contain events with the integer set {q} specified by us.

The sum is used to keep nonzero terms from the set {q}. The other variable of

the sum, h̃, is the input signal’s amplitude which we will also set ourselves.

Now we can apply this to Eq.(6.3). Only the weighted likelihood is changed,

Wk(h)

W k

= exp

{
− h2

2σ2

}
exp

{
h
∑
q∈{q} h̃δk,q

σ2

}
, (7.1)

where the previous variable changes are plugged into Eq.(5.1) and Eq.(5.2). Now

to plug this into the posterior defined by Eq.(6.3). The posterior can now be

solved analytically. This can be done by specifying windows to contain events.

Let’s start with only two windows, one of them being an event. The posterior

will then be,

p(h|D, I) = C5

(
W1(h)

W 1

+
W2(h)

W 2

)
. (7.2)

Plugging Eq.(7.1) into the previous line,

p(h|D, I) = C5

(
exp

{
h
∑
q h̃δ1,q

σ2
− h2

2σ2

}
+ exp

{
h
∑
q h̃δ2,q

σ2
− h2

2σ2

})
.

(7.3)

Since we set q, let’s set it to q = {1}. This means that window one will have

the event, while window two will not since it is not listed. Note that it does not

matter which window was chosen. Now to clean up with this information,

p(h|D, I) = C5 exp

[
− h2

2σ2

](
exp

[
h h̃

σ2

]
+ 1

)
. (7.4)

It is apparent that the window without the event has become a value of 1 when

factoring out the common exponential. It can be inferred that any extra time

windows for this case will be the same, as only one event is placed into the

observation period. Thus,

p(h|D, I) = C5 exp

[
− h2

2σ2

](
exp

[
h h̃

σ2

]
+ (N − 1)

)
, (7.5)

where N is the total number of windows we are considering for the observation

period. It is important to note that it does not matter which window contains
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(a) h̃ = 3 (b) h̃ = 3.5

(c) h̃ = 4

Figure 7.1: Normalized probabilities for increasing event amplitudes acting on a single

window. The standard deviation and the total number of windows, M = 2000, are

held constant.

the event. Since we set which window the event is in, we can assume to set it in

only a single possible combination. This analytic answer of the posterior shows

that a bimodal distribution is possible for values of h̃ proportionally greater

than (N − 1) with a diminishing factor of σ.

The next step for finding the posterior of arbitrary windows and events

will come as a choice. I’ve ignored this for the last example, but when working

through more than one possible window containing an event, there is a difference

between the number of windows we are checking for to contain the event and

how many events there actually are. This confusion comes from the product

term, which we use to maximize the probability when more than one window

has an event. We mildly cheat by setting q, but the product term will still run

through different window numbers. Effectively, even when only one event is

present, we check for more than there are, and the inverse also happening for
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when many windows contain an event. This will result in something different

from when we ourselves set q = {1, 2} and then check for that case. So, let’s

see what happens if we test for more events than there really are,

p = C5

(
W1(h)

W 1

W2(h)

W 2

+
W1(h)

W 1

W3(h)

W 3

+
W2(h)

W 2

W3(h)

W 3

+ ...

)
.

There are now two unique terms in the sum. First is where a window containing

the event is multiplied by a window not containing the event. The second is

when two windows without the event multiply. With q = {1}, the first unique

term comes from the product window catching an event and a window without

any interaction,

W1(h)

W 1

W2(h)

W 2

= exp

[
h
∑
q h̃δ1,q

σ2
− h2

2σ2

]
exp

[
h
∑
q h̃δ2,q

σ2
− h2

2σ2

]
, (7.6)

= exp

[
−

(h− h̃
2 )2 − ( h̃2 )2

σ2

]
,

while the second unique term is the product of two unaffected windows,

W2(h)

W 2

W3(h)

W 3

= exp

[
h
∑
q h̃δ2,q

σ2
− h2

2σ2

]
exp

[
h
∑
q h̃δ3,q

σ2
− h2

2σ2

]
, (7.7)

= exp

[
−h

2

σ2

]
. (7.8)

Now the posterior for three windows will be,

p(h|D, I) = C5

(
2 exp

[
−

(h− h̃
2 )2 − ( h̃2 )2

σ2

]
+ exp

[
−h

2

σ2

])
, (7.9)

where the coefficients of the exponential terms are simply the number of times

an exponential term appears. Thus, the exponentials themselves will not change

with the number of windows used but the coefficients will. So to expand the

equation for any number of windows used, N ,

p = C5

(
(N − 1) exp

[
−

(h− h̃
2 )2 − ( h̃2 )2

σ2

]

+

[(
N

2

)
− (N − 1)

]
exp

[
−h

2

σ2

])
. (7.10)
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Now consider labelling the number of events tested for Q. From the combina-

torics of the Q = 3 case, it can be inferred that the posterior can be generalized

as,

pQ = C5


(
N − 1

Q− 1

)
exp

−Q[(h− h̃
Q )2 + ( h̃Q )2]

2σ2


+

[(
N

Q

)
−
(
N − 1

Q− 1

)]
exp

[
−Qh

2

2σ2

]}
, (7.11)

for any value of Q. This can trivially be expressed as the sum of possible values

for Q,

p = C5

N∑
Q=1


(
N − 1

Q− 1

)
exp

−Q(h− h̃
Q )2 − ( h̃Q )2

2σ2


+

[(
N

Q

)
−
(
N − 1

Q− 1

)]
exp

[
−Qh

2

2σ2

]}
. (7.12)

This posterior is defined for a single event placed amongst the windows in an

observation period, but will not work for multiple events. Thus, the expression

for multiple events needs to be derived similarly to the first. This starts with

saying that there are now two events in the observation period, and that a

meaningful value to test for is Q = 2 as it is the matching number,

W1(h)

W 1

W2(h)

W 2

= exp

[
h
∑
q h̃δ1,q

σ2
− h2

2σ2

]
exp

[
h
∑
q h̃δ2,q

σ2
− h2

2σ2

]
, (7.13)

= exp

[
− (h− h̃)2 − (h̃)2

σ2

]
,

where q = {1, 2}. It is desirable to note that a general exponential term can be

made for the posterior at this point,

T (h) = exp

−Q[(h− kh̃
Q )2 − (kh̃Q )2]

2σ2

 , (7.14)

where k is the number of events actually present. Thus a general expression for

the posterior is,

p(h|D, I) = C5

∑
k,Q

A′ T (h) , (7.15)
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where A′ is some function that expresses the combinatorics of the exponential

terms. Solving for A′ via a single sum is nontrivial, so instead consider a different

approach to the problem where the exponential terms are separated.

So far, each posterior has been made by looking at a fixed number of ac-

tual events present and then varying the number of total windows. A different

strategy then is to keep the total number of windows fixed and instead vary

the number of actual events present. The posterior in every consideration is

made up of some observation period containing a number of windows, NW , and

a number of windows containing events, l,

L1, L2, L3, ..., Ll, Bl+1, Bl+2, ..., BNW

where Lk are windows containing events while nk are windows without events.

Each window is defined as,

Lk(h, h̃) = L(h, h̃) = exp

{
−1

2

(h− h̃)2

σ2
+

h̃2

2σ2

}
, (7.16)

Bk(h) = B(h) = exp

{
−1

2

h2

σ2

}
. (7.17)

To combine these window expressions, consider summing through by values of

l. As l increases, there will be more windows of Lk and less of Bk. For every

case of l the two types of windows will be raised to their respective amounts

and multiplied together. Now there are two sums with one nested in the other,

p(h|D, I) = C5

l∑
i=0

(l
i

)
L(h, h̃)i

NW−l∑
j=0

(
NW − l

j

)
B(h)j

 . (7.18)

This is the end of the process to find the posterior in the example problem and

it should be noted that the results from this final equation will not look unique

compared to Eq.(7.5). Actual values can be put in to give results regardless

of the number of event windows, total windows, tested positives and that is

the main purpose of this example. Unfortunately, this example solution runs

into a similar problem as the general solution Eq.(6.3) where a large number of

windows will be computationally heavy. Specifically the computation becomes
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massive when the number of event windows are comparable to the number of

nonevent windows.
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Chapter 8

Conclusion

Previous work done in Ref. [11] shows the work and results for Bayesian statis-

tical analysis of GPS data to find an event amplitude. This previous analysis

is only done on a single window, however. The goal here is to show the results

of multiple windows processed together. As shown by Fig.(7.1) multiple win-

dows will actually have a bimodal distribution, with one peak centered at the

null hypothesis (h = 0) and the second peak centered at, the estimated event

amplitude (h 6= 0). This means that further work could be done to separate

these two nearly Gaussian distributions and take a real confidence interval on

the event amplitude. Furthermore this theoretically works for any number of

windows used, up to the total number of windows used in a day.

The major issue with this method is that it is highly unrealistic for such a

number of windows, as it rapidly becomes computationally heavy. So overall

the process of this work could be used across several windows at a time to

sanity check the results of the SNR test performed as well as the posterior of a

single window. If a multiple window posterior is generated for data containing a

possible event and the distribution is clearly bimodal, then the estimated event

signal amplitude will be more rigorously denoted as a transient effect with a

velocity in line with the standard halo model. This is because the bimodality

can be inferred as the event amplitude being high enough to split off from the
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null hypthesis, and that the event amplitude also appeared for only an individual

window. This may verify the possible event to be a domain wall TD as opposed

to other exotic models or different dimensioned TD’s.
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