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Abstract

This senior thesis explores the idea of varying fundamental constants. This variation can be over
spacetime, or due to physical interactions. The connection between the values of the constants and life
is explored via the Anthropic Principle and the idea of a multiverse. Further, current knowledge about
the coupling constants is summarized. Deeper analysis is performed on the electromagnetic coupling
constant, α, and how its variation would change atomic structure. Dark matter is introduced as a means
of effective variation in the fundamental constants, according to the literature, and it is shown how some
variations can be mathematically re-expressed to be consistent with current equations. Lastly, some
modern evidence regarding variation is considered.

1 Introduction

Laws of physics are commonly expressed via equalities, which contain any number of variables and constants.
Those values and their inter-dependencies are physically meaningful: they can be tested against the real
world to be either observably true or untrue, and if they are shown to correspond to reality, then they give
predictive power.

The complex web of physical relationships depends on constants. These constants in themselves have
inter-dependencies, meaning that many of them can be or are derived from other constants. Following these
equalities allows one to distill the numerous physical constants into a pool of fundamental constants, which
are universal in importance, but cannot themselves be derived, and must be measured.

An example of such a constant is c, the speed of light. Historically, it was a variable that depended on
the specific patch of light. This idea was encompassed by the theory of the luminiferous aether. However,
numerous tests rejected the theory, and found that c did not change, neither by location nor even by the
observer’s velocity. Its constancy is the founding idea behind Special Relativity, and the value shows up in
many other places, such as electromagnetism. This is what makes c a fundamental constant.

1.1 Physical Theories

There is no single definition of “fundamental constant”, nor is there an agreed upon set of fundamental
constants [1]. Indeed, what one considers to be a fundamental constant depends on the theories considered.

Certain constants are more well known, and more widely considered as fundamental. The fundamental
constants of biggest fame are:

c: The speed of light (in vacuum), and the maximum speed of causality.

~: The fundamental unit of spin, and the basis of quantum uncertainty.

G: The gravitational constant.
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Figure 1: The Bronshtein-Zelmanov-Okun cube of physical theories: [1, 2],
NM = Newtonian Mechanics,
SR = Special Relativity, NG = Newtonian Gravity, QM = Quantum Mechanics,
GR = General Relativity, QFT = Quantum Field Theory, NQG = Nonrelativistic Quantum Gravity,
ToE = Theory of Everything

These three fundamental constants are highly important in modern physical theories. The inclusion or
exclusion of these constants in theories creates a categorization scheme, known as the Bronshtein-Zelmanov-
Okun cube, which is shown in Fig. 1 [1, 2]. It is important to note that the corners describe categories and
not specific theories, though the naming of the categories typically follows the most well known theories.

Currently, the two best theories are General Relativity and the Standard Model (a Quantum Field
Theory). The Standard Model includes over 20 fundamental constants [3], but it does not explain gravitation
and does not include G.

Some of the fundamental constants used in the Standard Model include [1, 3]:

me: The mass of an electron.

mp: The mass of a proton.

mn: The mass of a neutron.

e: The magnitude of the charge of an electron.

Refer to appendix A.1 for a more inclusive list, as well as the accepted numerical values.

1.2 Naming Conventions

The constancy of the fundamental constants is an assumption, and it is an important question in physics as
to whether their values vary or not. Furthermore, the “fundamental” aspect may be defined as the inability
to be derived. Some sets of constants are inter-dependent, and knowing the values of some determines the
values of others. To maintain some consistency, this will not immediately disqualify a constant from being
fundamental. Thus, many fundamental constants will still be called such, despite not necessarily being
fundamental or constant.

To quantify how many fundamental constants need to be measured to determine all relevant values,
the values to be determined are called free parameters. The choice of which fundamental constants are
considered free parameters is arbitrary, but the amount of free parameters is fixed within any given theoretical
framework.

As an example, the fine-structure constant αEM of Quantum Electrodynamics (QED) is defined as

αEM =
e2

4πε0~c
≈ 1

137
, (1)
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where ε0 is the electric constant, and the other constants are defined as before. Out of the five fundamental
constants {αEM , e, ε0, c, ~}, only four may be considered free parameters, and the fifth can be derived from
the other four.

The unitless value αEM is a coupling constant, which determines the strength of electromagnetic inter-
actions. The other forces have their own coupling constants as well. Because these constants are unitless, it
is a major scientific quest to find a mathematical reason for their value. Doing so would reduce the amount
of free parameters necessary to explain the universe.

Another big quest in physics is to find a Theory of Everything (ToE), which would combine the Standard
Model with General Relativity. Such a theory could also reduce the number of free parameters. Some argue
that c,G, ~ are the only true free parameters, from which all the other fundamental constants can be derived,
and a ToE could provide the explanation, though currently no such theory exists [1, 2].

1.3 Relation to Measurements

The three fundamental constants c,G, ~ can be used to define the three main units of measurement: mass,
distance and time. This is essentially a transformation of basis, as seen with

T ({G, ~, c}) = T2(T1({G, ~, c})) = T2({mPl , lPl , tPl }) = {kg , m , s}. (2)

The transformation T is defined by two separate transformations, T1 and T2. The transformation T1 first
converts the fundamental constants into Planck units, which are also known as natural units when the units
are omitted (see appendix A.2 for their definition). The second transformation, T2, then rescales the Planck
units to output the more familiar SI units. T2 can be replaced by some other transformation to yield other
systems of measurement, or excluded entirely.

The set of fundamental constants used in modern theories has both unitless and unitful parameters.
The unitful parameters present a challenge. Using the transformation T in equation (2) to define units of
measurement inexorably intertwines them with the fundamental constants G, ~, c. Thus, if the value of a
fundamental constant changes, the units with which we measure that constant could also change, and so the
numerical values measured may be deceiving. In measuring the numerical values of G, ~, c, the result could
simply echo the definition of the transformation T , in essence yielding a tautology. Using another means to
define units of measurement only shifts the problem, and possibly obfuscates observations.

Thus, it may be only meaningful to measure unitless constants, and unitless ratios of constants, such as
αEM and µ = mp/me. It is possible to directly compare the values of a single constant in different spacetime
regions, since this is a unitless ratio, but care has to be taken in order to avoid the above problem.

2 Philosophy

One of the questions concerning the fundamental constants is: Why do they have the values that they do?
There is no known explanation, and so they are considered to be free parameters.

2.1 Anthropic Principle

One possible explanation for the values we observe is the Anthropic Principle 1, which links the presence
of life to the fundamental constants. Any observations requires observers, and the presence of observers
may necessitate specific physical laws and values of fundamental constants. Life cannot observe itself in
an environment that does not support that life, therefore it is reasonable that we would find ourselves in
a universe and locale that does support us. This can be used to explain fine-tuning – the fundamental
constants are locked to specific values because we are here to observe those values.

For example, 1/αEM ≈ 137 = Zcrit is an approximate upper limit to the atomic number, since larger
atomic numbers greatly favor inverse β-decay of electrons and nucleus protons, which reduces the atomic
number and stabilizes the atom [4]. We can see that current observations are consistent with this limit;
we know of no elements that have more than 137 protons. Variations of αEM would lead to changes in

1There are two variation, the Weak and Strong Anthropic Principles. The strong version states that the universe must come
to support life, wherein fine-tuning is an inherent requirement. The Weak Anthropic Principle does not hold such a requirement.
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chemistry, and at 1/αEM ≈ 1, atomic structures become unstable, as is demonstrated later in this thesis for
the hydrogen atom.

Other considerations can place even stricter bounds on potential values of various fundamental constants.
Requiring that the lifetime of a proton exceeds the current age of the universe places an upper bound on
αEM , and requiring the presence of a Grand Unified Theory implies a lower bound [1]:

1/170 < αEM < 1/80 (3)

2.2 Multiverse

The Anthropic Principle could explain why the fundamental constants hold the values that they do, but by
restricting possible values, the odds of a universe bearing life becomes successively less probable. Theoretical
calculations and simulations of the universe under a slightly changed set of fundamental constants show that
the universe would be vastly different [5]. A small nudge would have large consequences, likely preventing
life.

By using the Anthropic Principle, we have shifted the problem from finding out why the fundamental
constants are the way they are, to finding out why life exists. After all, our universe could have had different
parameters resulting in an absence of life, though consequently no one would be around to observe such.
The probability of life seems remote, yet it exists.

One way to resolve this problem is via the idea of a multiverse. If there are many universes, each one with
its own set of fundamental constants, then there are many opportunities for life to happen. An arbitrarily
large amount of universes could essentially guarantee that life exists somewhere, and then that life would
observe hospitable conditions.

To define what a multiverse is or could be, it’s first necessary to define what a universe is. Unfortunately,
there are several definitions. A possible definition is the set of all contiguous space that is causally linked
two-ways.

If points A and B can influence each other, then they can be said to be in the same universe. This
definition is useful, but fragile. For example, our universe is expanding, and some parts of it are receding
beyond our causal range [6]. In this way, what a universe is, is time-dependent and observer-dependent.

Taking Earth to be point A, there are two points B and C, such that A and B are causally linked, and A
and C are casually linked, but B and C are not. The lack of the transitive property is not intuitive in this
definition.

Following this, some possible definitions of a multiverse are:

I: Continuous Multiverse: It is possible to imagine that, in a universe according to one observer, there
are many other observers who see regions outside the first observer’s universe. Each of those observers
can in turn function the same as the first observer. Then, our universe can be continuously extended
into a multiverse.

II: Discrete Multiverse: It is also possible that our observable universe lives inside a bubble, one of many
others. These bubbles may exist separate from each other, perhaps inside a space of eternal inflation
that serves as a separation medium [2].

III: Container Multiverse: Similar to the previous idea, it is possible that bubble universes contain each
other. If they exist, black hole universes are contained universes, because it would be theoretically
possible to enter them, but not to exit them. Container multiverses only have one-way causal linkage.

IV: Quantum Multiverse: Assuming the many-worlds interpretation of quantum mechanics, each collapse
of a wave function spawns many worlds – the different quantum universes are expressions of the
possibilities. In this way, our universe perpetually branches into an arbitrarily large amount of alternate
universes.

V: Mathematical Multiverse: The broadest definition of the multiverse dictates that everything that
mathematically could be, is. By this definition, all realities that are self-consistent exist.
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If a multiverse allows for the fundamental constants to take on different values in different universes, then
a fine-tuned universe is almost guaranteed.

Unfortunately, the more easily a multiverse could guarantee fine-tuning, the less testable and practical it
is. On the ridiculous side, a mathematical multiverse guarantees everything that is self-consistent, but it is
also completely untestable.

For the scientist, a multiverse presents a challenge of falsifiability. A universe that is entirely causally
disconnected from our reality has no hope of being testable. A one-way causal linkage allows for some testing,
but not for the whole scientific process – the tester either has no control of the input of the experiment, or
they cannot obtain the output.

This renders the idea of a multiverse scientifically dubious. One possibility of testing a multiverse is to
use better definitions. It may happen that, as our knowledge expands, what we see as causally connected
expands as well – in other words, our scientific reach may expand beyond what we have previously seen as
our universe.

3 Coupling Constants

The Standard Model states that there are four fundamental forces: the electromagnetic, weak, strong, and
gravitational forces 2. All interactions are mediated by one or more of these four, and the strengths of these
forces are determined by unitless coupling constants {αf}, where f is a stand-in for the respective force. A
bare α is the usual shorthand for αEM , and α is also known as the fine-structure constant.

Interestingly, we already know that the coupling constants {αf} change, and their dynamic values are
expressed as αf (E), where E is the energy of the interaction 3, and αf (E) is a function of that energy.

This property is described by quantum dynamics. In Quantum Electrodynamics, the true charge 4 of an
electron is hidden by the polarized vacuum around it, and this screening of the charge lowers the effective
charge of the electron [3]. At higher energies, particles can come closer to each other, and the screening
effect decreases.

The change to αEM can be linked to the change of e, as in:

α′EM =
e′2

4πε0~c
, (4)

where α′EM and e′ are the modified EM coupling constant and modified fundamental electric charge, respec-
tively. The other fundamental constants do not change in this model.

For electromagnetism, increased interaction energies increase the effective electron charge, and thus
increase the effective coupling constant. A similar effect happens to the strong and weak forces, except their
respective coupling constants decrease at higher energies.

When interaction energies surpass the rest energy of the W± and Z bosons of the weak force (as calculated
by E = mc2 from rest mass m), which occurs past 90GeV, the electromagnetic and weak forces can be
modelled as a single force [3], the electroweak force. In this energy range, αEM ≈ 1/128 [7]. These energies
are achievable in current colliders, which provide positive evidence for this unified force. In this model, αEM
and αW are not fundamental constants in themselves, nor independent – the true fundamental constant is
αEW , and the other two coupling constants may be derived from it. The reason that the electromagnetic and
weak forces appear as separate forces has to do with spontaneous symmetry breaking, wherein an outcome
of a symmetric law need not be symmetric.

This unification may be taken one step forward to include the strong force, and a theory describing the
unification of the three fundamental forces would be called a Grand Unified Theory (GUT). Unfortunately,
such a unification is predicted to happen at energies above ∼ 1015 GeV [3, 8], which are not currently
achievable. Furthermore, most potential GUTs have issues, such as a finite half-life for protons. While the
predicted lifetimes for protons in such models are around 1030 yr , which greatly surpasses the current age of
the universe, current observations place a lower bound that is above most GUT-predicted proton lifetimes.

2Though the gravitational force is not modelled by the Standard Model
3While E is usually not a relativistic quantity, it is possible to find the scale of the energy of an interaction between two

particles by multiplying their four-momenta: p1 · p2. Thus, the coupling constants can be described relativistically.
4The widely accepted electron charge −e is taken to be the fully screened charge and not the “true charge”.
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Figure 2: The potential trend of coupling constant values over a range of interaction energies, such that they
become united at high enough energies.

However, if a GUT becomes widely accepted, the three coupling constants representing the three forces
may be united, further reducing the number of free parameters. The final step after a GUT is to bring in
gravity. In a Theory of Everything (ToE), all four forces may be described as a single force, with a single
coupling constant, αToE . Figure 2 shows a rough sketch of how the four base coupling constants may merge
into a single coupling constant at higher energies, if a ToE can unify the four forces. However, there is no
guarantee that the coupling constants exhibit this trend. The creation of a ToE is a dramatic challenge,
because unlike the other three forces, there is currently no relativistic quantum theory of gravity.

For the rest of this thesis, we will assume that the coupling constants {αf} refers to the base values
{αf (0)} – the coupling constants as they are at zero energy – unless otherwise stated.

3.1 The EM Coupling Constant

Of the four fundamental forces, electromagnetism is most understood. Its coupling constant is measured to
extreme precision, and has led to some of the best predictions in quantum mechanics [9, 3]. The best current
theory is Quantum Electrodynamics.

In QED, Feynman diagrams are visual representations that describe possible interactions between real
particles, and those diagrams encode mathematical expressions that indicate the likelihood of those inter-
actions. For any given set of real particles, there is an infinite set of potential interactions mediated by
virtual particles. The overall diagram can be described by a combination of interconnected vertices, and
each additional vertex modifies the probability of the associated interaction roughly by α [3]. Hence, by
controlling the probabilities, α dictates the strength of interactions. Feynman diagrams apply to Quantum
Flavordynamics (QFD) and Quantum Colordynamics (QCD) as well, though the precise rules are slightly
different.

3.2 Schrödinger Equation and Hydrogen

Suppose we desire to calculate the effect of varying α on atomic structure. For simplicity, we will work with
hydrogen-like atoms, which contain Z protons in the nucleus, and one bound electron.

While QED offers great precision, it is difficult to calculate for even this simple case. There are several
alternatives in quantum dynamics that may be easier to work with, but whose results may not be as accurate
as QED.

Schrödinger’s (time-dependent) equation is [3]

(−~2∇2

2m
+ V )︸ ︷︷ ︸

H

Ψ = i~∂tΨ, (5)
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where Ψ is the scalar wave function of a particle, m is the mass of that particle, ~ is defined as before, ∇2 is
the Laplacian operator, V is potential energy, H is the Hamiltonian operator, and both Ψ and V may vary
over space and time. This is a simple, non-relativistic model.

For a Coulomb potential, with a single electron orbital around a point charge of magnitude Ze, the
potential is

V (r) = − Ze2

4πε0r
= −Zα~c

r
, (6)

where r is the distance between the single electron and the point nucleus. For such a potential, the resulting
binding energies of the orbitals are [10]

En = −mec
2Z2α2

2n2
≈ −13.6

Z2

n2
eV , (7)

where n is the principal quantum number that specifies the orbital of the single electron, and we take
α ≈ 1/137.

Using the Schrödinger equation to model a hydrogen atom (when Z = 1), with the currently accepted
value of α, the first binding energy is

E1 ≈ −13.6eV . (8)

This result agrees with observed values, but this model excludes relativistic effects and ignores electron spin,
so this model may not work well at different values of α.

3.3 Dirac Equation and Hydrogen

A single electron orbital may also be modelled by the Dirac equation [10],

(cα · p+ βmec
2 + V )︸ ︷︷ ︸

HD

φ = Eφ, (9)

where φ is the bi-spinor (spinor with four components) wave function describing the electron,

α =

(
0 σ
σ 0

)
, (10a)

β =

(
1 0
0 −1

)
, (10b)

are 4x4 matrices, σ are the three Pauli spin matrices,

σ1 =

(
0 1
1 0

)
, (11a)

σ2 =

(
0 −i
i 0

)
, (11b)

σ3 =

(
1 0
0 −1

)
, (11c)

p = −i~∇ is the three-momentum operator defined via the gradient, V is the potential energy as before,
HD is the 4x4 matrix Dirac Hamiltonian, E is the total energy of the particle, and c and me are defined as
before. This equation is occasionally expressed in atomic units (see appendix A.3 for an explanation).

This Dirac equation is both relativistic and accounts for the electron’s spin. However, the inclusion of a
potential V ignores some of the details of QED, and as such, some precision is lost. For example, the Lamb
shift cannot be predicted by this model. Furthermore, the potential V is a Coulomb potential, and thus has
a singularity at r = 0, which skews the analysis.
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For this model, the energy levels are given by [10]

En,κ = mec
2/

√
1 +

α2Z2

(γ + n− |κ|)2
, (12)

where En,κ is the total energy of the electron, n, c and Z are defined as before,

γ =
√
κ2 − α2Z2, (13a)

κ = ∓(j + 1/2) when j = l ± 1/2, (13b)

j is the total angular momentum, and l is the orbital angular momentum, and all angular momentum
excludes units of ~. Because En,κ is the total energy, the binding energy must be calculated by subtracting
the rest energy mec

2 from En,κ.
Note that the energy levels depend on |κ|, and thus on the total angular momentum j, but not directly

on the orbital angular momentum l – there is degeneracy here that is lifted by the Lamb Shift not included
in this model. While an electron orbital may be described by the quantum numbers n and l (and ml, the
z-component of the angular momentum), it is the overall hydrogen-like atomic system that dictates the
electron’s energy levels in this model. For any given n, l = 0, 1, ..., n, and j = l± 1/2 > 0. This implies that
κ = −n,−n + 1, ...,−1, 1, ..., n − 1. These bounds dictate the possible values of the quantum numbers, for
which the wave function is defined and well behaved.

If we plug in values for a hydrogen atom (Z = 1) and assume the currently accepted value of α, we get
that the first binding energy is

E1,−1 −mec
2 ≈ −13.6eV , (14)

which matches both the Schrödinger model and observations.
This model is demonstrably correct, and should still hold under different values of α, which lets us

hypothesize how a hydrogen atom would behave under varying α. In Figure 3, we plot the first few orbital
energy levels. The results are:

α = 0: the electromagnetic force has no strength and ceases to exist, which can be seen by the electron’s
energy level equalling its rest energy for all orbitals.

0 < α < 1: all the normal orbitals exist meaningfully. As α increases and approaches 1, the magnitude of the
binding energy of all orbitals increases. The closer α approaches to 1, the more relativistic the binding
energy becomes, especially for the n = 1 (1s) orbitals.

α = 1: the orbitals represented by n = 1 neither add nor subtract energy to the nucleus-electron system,
which implies that such a bound electron can pop into and out of existence spontaneously (ignoring
other conservation laws). All n = 2 orbitals exist at this point, but the solutions to the equation
governing the energy of the 2s1/2, 2p1/2 orbitals border the complex solutions, and those are assumed
to be non-physical. This may either indicate a physical property of the system, or a problem with the
model.

1 < α < 2: only 2p3/2 (for which n = 2, κ = −2, j = 3/2, l = 1) is physical, and it continues the trend of deepening
the binding energy as α increases.

α = 2 the 2p3/2 orbital is at the zero energy level, and ceases to exist meaningfully after this point within
this model.

The existence of the orbitals can be analyzed by observing the behavior of γ =
√
κ2 − α2Z2; the value

under the square root must be non-negative for the orbital to be real and stable, otherwise complex values
of γ yield complex energies, which do not represent stable orbitals. We have real values of γ only if

κ2 ≥ α2Z2 ⇒ α ≤ |κ|/Z. (15)
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Figure 3: Energy levels of a bound electron around a hydrogen (Z = 1) point-like nucleus.

This implies that the value of α puts a lower bound on |κ| such that orbitals are still meaningful, and
any given value of |κ| yields physically meaningful orbitals for values of α up to the critical threshold

αcrit = |κ|/Z = (j + 1/2)/Z = (|l ± 1/2|+ 1/2)/Z. (16)

This can be interpreted to mean that a strong enough electromagnetic force requires orbital electrons to
maintain a higher orbital angular momentum l in order for the orbital to be stable. Because l < n, some
principal quantum numbers become forbidden at high enough values of α.

3.4 Non-Point-Like Corrections

One of the problems of the above analysis is that we take the nucleus to be point-like. The resulting potential
V has a singularity at the origin that becomes relevant at high enough values of the product Zα. In order
to extend our analysis of single-electron orbitals into negative energies, we must use another potential.

To avoid the singularity, we can model the nucleus as a spherical shell with radius [11]

R ≈ 1.2A1/3 fm , (17)

where A is the mass number. This results in a truncated Coulomb potential

Vtr(r) =

{
−Zα~cr , r > R

−Zα~cR , r < R
, (18)

where r is the distance from the center of the nucleus, and all other parameters are defined as before.
A comparison between the Coulomb potential and its truncated version is shown in Fig. 4. Both Fig. 4a

and Fig. 4b are rescaled by the radius R in order to be comparable.
While a shell nucleus is not a fully accurate model, it serves as a better model than the point-like nucleus,

and simplifies some calculations while avoiding the nasty singularity.
Because our new model should allow us to analyze the behavior of an atom with negative energy orbitals,

we may performs calculations for when the 1s1/2 orbitals dip into E = −mec
2. This is our new condition for

criticality, because it is at this point that the vacuum destabilizes and produces electron-positron pairs [11].
A nucleus with an orbital whose energy dips below −mec

2 must have such an orbital filled, otherwise it
is spontaneously filled by the production of bound electrons, with associated unbound positrons produced
from the excess energy to satisfy charge conservation laws. Any attempts to ionize that orbital would rather
produce more electron-positron pairs. In this way, the nucleus and the electron orbital stop being separate
objects.
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Figure 4: Two different potentials around a nucleus.

Our focus will be directed on the 1s1/2 orbital, because it reaches criticality first. Other orbitals have
their own criticality points, and they happen at more extreme values of α and Z.

Solving the Dirac equation at the critical energy E = −mec
2 for the 1s1/2 orbital yields [11]:

QK ′iν(Q)

Kiν(Q)
= 2(Zα) cot(Zα), (19)

where K is the modified Bessel function of the second kind, its derivative is in respect to Q, and

ν = 2
√

(Zα)2 − κ2, (20a)

Q =

√
8mec2ZαR

~c
. (20b)

The necessary computations were carried out with the help of the Wolfram Notebook. The code and
output can be seen in appendix B, including some graphs.

For Z = 1,

αcrit ≈ 1.1333. (21)

That is to say, for a hydrogen atom, the 1s1/2 orbital energy dips below −mec
2 for α > αcrit ≈ 1.1333.

Given a value of α, we also calculate the maximum Z for which the 1s1/2 orbital energy remains above
−mec

2, rounded down. For α = 1/137,

Zcrit ≈ 173, (22)

which agrees with literature values [11]. For α = 1,

Zcrit ≈ 1. (23)

At currently accepted values of α ≈ 1/137, nuclei may have as many as 173 protons before the EM field
gains the ability to spontaneously produce real electron-positron pairs. However, at α = 1, only the hydrogen
nucleus is able to exist without spontaneously polarizing the vacuum.
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Roughly,

Zcrit ∝ 1/α, (24a)

αcrit ∝ 1/Z. (24b)

The reason for this is because, in our criticality equation (19), most times Z and α are together, in the form
of the product Zα. If this were always the case, then a specific value of Zα would solve the equation, from
which the above relations would hold. The exception occurs in our estimation of the nuclear radius R, which
depends on the atomic mass, which further depends only on Z in our model, but not α.

Recall that in our previous analysis, using the Dirac equation and modelling the nucleus as a point, we
calculated αcrit for E = 0 energy levels, and there, αcrit ∝ 1/Z as well. This correspondence reinforces both
analyses.

3.5 Summary of Varying α

Based on this work, varying α changes atomic structure, and limits permissible atomic numbers that do not
polarize the vacuum.

The value of α plays a huge role in chemistry. A different value of α could fundamentally change what
atoms are stable, or prevent atomic structures altogether. Even at α = 1/70, which is around twice the
current accepted value, uranium (Z = 92) ceases to function as it does now, and its atomic structure
degrades. By knowing the stability of atoms, we can put limitations on the potential values of α.

It is important to note that these analyses apply to bare nuclei, with single bound electrons, and that
they ignore the effects of α on the structure of the nucleus – since protons, and even the quarks that make
up protons and neutrons, are charged, interactions inside the nucleus could be impacted by a varying α.

4 Effective Variation

There may be any number of reasons why the value of a fundamental constant varies. Some searches are
concerned about variation across spacetime, wherein the base fundamental constant changes for no apparent
reason. However, there can also be interactions that effectively modify the value. Those interactions are
made implicit by including them in the effective value of a fundamental constant, which is then used in most
other places.

4.1 Dark Matter

Dark matter may induce such interactions. If dark matter interacts in some ways with particles of the
Standard Model, it is possible for this interaction to locally change the effective values of the fundamental
constants. For example, the masses of fermions and the coupling constants may effectively vary, as described
by [12, 13]

mf,eff = mf

[
1 + Γ

(n)
f

(
φ
√
~c
)n]

, (25a)

αeff ≈ α
[
1 + Γ(n)

α

(
φ
√
~c
)n]

, (25b)

where mf,eff and αeff are the effective fermion mass and coupling constant values, mf and α are the fermion
mass and coupling constant values before the dark matter perturbation, n = 1, 2 is the order of the dark
matter Lagrangian, the {Γ} are coupling constants between the dark matter and fermion/boson field, and φ
is the dark matter field itself.

This variation can be detected by a network of sensors, such as atomic clocks positioned around the
Earth [12, 13]. Such sensors may be used to detect the variation of fundamental constants, but they may
also indicate a new physical interaction or phenomenon, such as dark matter.
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4.2 Refactoring the EM Force

The variation of the fundamental constants introduces a new problem: Their derivatives are no longer
identically zero. This can play a large role in writing physical equations, but it may be possible to use clever
mathematics to reformat old equations to fit with such variations.

Suppose that the effective electric charge varies:

eeff = eε, (26)

where eeff is the effective/apparent fundamental electric charge, ε is some perturbation around 1, and e is
the base fundamental electric charge. This variation can be linked to a variation in α via equation (1).

This variation demands us to rewrite the electromagnetic tensor Fµν as [2] 5

Fµν =
∂µ(εAν)− ∂ν(εAµ)

ε
, (27)

where Aµ is the electromagnetic four-potential. For non-varying ε, the regular form of the electromagnetic
tensor is recovered.

The above can be simplified by defining auxiliary variables,

fµν = εFµν , (28a)

aµ = εAµ, (28b)

to yield the expression

fµν = ∂µaν − ∂νaµ. (29)

Thus, we are back at the familiar form of the EM force, and the variation of the electric charge has been
magicked away as part of the force. Both formulations are mathematically equivalent, but there is a concep-
tual difference. Care has to be taken because the physical meaning of fµν and aµ may not match with that
of Fµν and Aµ, though only the EM fields Fµν (or fµν) in particular are directly observable.

5 Evidence of Variation

There have been many experiments attempting to measure potential variation in the fundamental constants.
One of the more well known experiments involve the natural nuclear reactor in Oklo, Gabon. A varying α
would impact nuclear rates, and these rates can be compared against current fission content in the reactor.
The resulting approximate bound in the variation of α is [1]

α̇

α
= (−0.8± 5.9)× 10−17 yr−1 , (30)

with a 2σ confidence level. Different analyses of the nuclear reactor give different bounds, depending on the
assumptions built into the analyses.

Another experiment compares Al+ and Hg+ optical clocks, which yields a unitless ratio that provides a
similar bound on the variation of α [14]:

α̇

α
= (−1.6± 2.3)× 10−17 yr−1 . (31)

Combination of many optical clock experiments and other experiments yields some of the best bounds
[14]:

α̇

α
= (−0.7± 2.1)× 10−17 yr−1 , (32a)

µ̇

µ
= (0.2± 1.1)× 10−16 yr−1 , (32b)

5Here, we assume the flat spacetime of Special Relativity. General Relativity makes a distinction between the normal partial
derivative δµ, and the absolute covariant derivative ∆µ, which would complicate our analysis.

12



where µ = mp/me as before.
Various stellar observations about the age of stars constrain the probable variation of the gravitational

constant [1]:

Ġ

G
= (−0.6± 4.2)× 10−12 yr−1 (33)

All of these observations are consistent with zero variation, meaning that it is still considered to be a
scientific possibility that the fundamental constants do not change over spacetime.

6 Summary

Physics relies on fundamental constants, which appear in many important theories that model reality. These
fundamental constants may change over spacetime or due to interactions. The Anthropic Principle may
explain why the fundamental constants have the values that they do, and a multiverse may provide an
explanation for the likelihood of fine-tuning. The coupling constants are important to the stability of various
structures in our universe. This senior thesis explains the effects that a varying EM coupling constant would
have, using various quantum mechanical models. There is a rough inverse relationship between the EM
coupling constant and atomic numbers corresponding to stable atomic structures. Dark matter interactions
are a possible explanation for a variation in the EM coupling constant, as well as fermion masses. Various
observations and experiments attempted to measure possible variations in several fundamental constants,
and currently, there is insufficient conclusive evidence that the fundamental constants vary over spacetime.
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Appendices

A Constants and Units

A.1 Constants

Defined in SI units kg , m , s and other derived units, the constants used throughout this thesis and their
accepted values are:

� Speed of light: c ≈ 2.998× 108 m s−1

� Reduced Planck constant: ~ ≈ 1.055× 10−34 J s ≈ 6.582× 10−22 MeV s

� Gravitational constant: G ≈ 6.673× 10−11 m3 kg−1 s2

� Mass of electron: me ≈ 0.5220MeV c2

� Mass of proton: mp ≈ 938.3MeV c2

� Mass of neutron: mn ≈ 939.6MeV c2

� Mass W±: mW ≈ 80.42MeV c2

� Mass of Z: mZ ≈ 91.19MeV c2

� Positive magnitude of electron charge: e ≈ 1.602× 10−19 C

� Electromagnetic coupling constant: αEM ≈ 1
137.0359895 ≈ 0.007297353080

A.2 Planck Units

Planck units are defined in terms of ~ , G , c (and sometimes kB ).
Setting

~ = G = c = kB = 1 (34)

defines natural units.
Conversion between Planck and SI units:

� lPl =
√

~G
c3 ≈ 1.616× 10−35 m

� tPl = lPl /c =
√

G~
c5 ≈ 5.391× 10−44 s

� mPl =
√

~c
G ≈ 2.176× 10−8 kg

� EPl = mPl c
2 =

√
~c5
G ≈ 1.956× 109 J

� TPl = EPl

kB
=
√

~c5
Gk2B

≈ 1.417× 1032 K
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A.3 Atomic Units

Atomic units are defined [10, 14] by declaring that

me =
e√

4πε0
= ~ = 1. (35)

In these units,

� c = 1/α ≈ 137.0359895

� Rest energy of electron: Ee,0 = mec
2 = c2 = 1/α2 ≈ 18778.86241

B Wolfram Notebook Program

Below is the PDF copy of my notebook used to calculate critical values: αcrit versus Z, and Zcrit versus α.
To rid myself of units, I used

8 ∗ (1.2fm)mec
2

~c
≈ 0.02486. (36)

I inputted specific atomic masses of small nuclei, and used the estimation

A ≈ (1.45 + 0.24 ln(Z))Z, (37)

to obtain approximate masses of larger nuclei. Here, A is the expected atomic mass number of stable isotopes.
This is a homebrewed estimate, which is arrived at by assuming the general form, then solving for two points,
Z = 10 (neon) and Z = 80 (mercury). This formula yields values within ±2 of most stable isotopes, and for
large nuclei, this margin of error does not significantly impact the estimate of R, nor the resulting values of
αcrit and Zcrit.

The discrete plots are plotted with

DiscretePlot[y-axis-array, x-axis-range]

which is important to know for interpreting the title-less graphs produced. For the second graph,

ai = 1/α (38)

is used for convenience.
Later, I test that R indeed plays a role, both graphically and by testing the value of Zα. While the last

two graphs are similar, R serves to slightly rescale one of the expressions, which happens when Z varies, but
not when α varies.
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In[1]:= Clear ["Global` *"] ;

In[2]:= masses = {1, 4, 7, 9, 11, 12, 14, 16, 19, 20};

mass [Z_] := If[Z < Length [masses ], masses [[Floor [Z]]], (1.45 + 0.24 * Log[Z]) * Z];

In[4]:= Za := Z * a;

R := (mass [Z])^ (1 / 3);

Q := Sqrt [0.02486 * Za * R];

In[7]:= k = -1;

i = Sqrt [-1];

iv := i * 2 * Sqrt [Za^2 - k^2];

In[10]:= Kiv := BesselK [iv, Q];

dKiv := iv / Q * BesselK [iv, Q] - BesselK [iv + 1, Q];

In[12]:= leftEq := Re[Q * dKiv / Kiv];

rightEq := 2 * Za * Cot[Za];

In[14]:= aCrit := FindRoot [leftEq == rightEq, {a, 1 / Z}][[1, 2]];

In[15]:= as = Range [1, 100];

For[Z = 1, Z ≤ 100, Z++, as[[Z]] = aCrit ]

as[[1]]

1 / as

Out[17]= 1.13336

Out[18]= {0.882333 , 1.73416, 2.5806, 3.42785, 4.27154, 5.11883, 5.95725, 6.79348, 7.62083,

8.46006, 9.28913, 10.1166, 10.9424, 11.7669, 12.59, 13.4119, 14.2326, 15.0521,

15.8706, 16.6881, 17.5046, 18.3202, 19.1348, 19.9486, 20.7616, 21.5738,

22.3852, 23.1958, 24.0058, 24.815, 25.6235, 26.4314, 27.2387, 28.0453,

28.8513, 29.6567, 30.4615, 31.2658, 32.0695, 32.8726, 33.6753, 34.4774,

35.279, 36.0802, 36.8808, 37.6809, 38.4806, 39.2799, 40.0787, 40.877, 41.6749,

42.4724, 43.2695, 44.0661, 44.8624, 45.6582, 46.4537, 47.2487, 48.0434,

48.8377, 49.6317, 50.4252, 51.2185, 52.0113, 52.8039, 53.596, 54.3879,

55.1794, 55.9705, 56.7614, 57.5519, 58.3421, 59.132, 59.9216, 60.7108,

61.4998, 62.2885, 63.0769, 63.8649, 64.6527, 65.4402, 66.2274, 67.0144,

67.8011, 68.5874, 69.3736, 70.1594, 70.945, 71.7303, 72.5154, 73.3002,

74.0847, 74.869, 75.6531, 76.4369, 77.2204, 78.0037, 78.7868, 79.5696, 80.3522 }



In[19]:= DiscretePlot [1 / as[[Z]], {Z, 1, 100}]

Out[19]= 
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In[20]:= ZCrit := FindRoot [leftEq == rightEq, {Z, 1 / a}][[1, 2]];

In[21]:= a = 1 / 137;

ZCrit

Out[22]= 173.066

In[23]:= Zs = Range [1, 140];

For[ai = 1, ai ≤ 140, ai ++, a = 1 / ai; Zs[[ai]] = ZCrit ];

Zs

Out[25]= {1.13336, 2.30659, 3.48756, 4.66765, 5.85269, 7.05023, 8.2432, 9.44779, 10.651,

11.859, 13.0698, 14.283, 15.4986, 16.7165, 17.9363, 19.1582, 20.3819, 21.6073,

22.8344, 24.0632, 25.2934, 26.5252, 27.7583, 28.9929, 30.2288, 31.4659, 32.7043,

33.9439, 35.1846, 36.4265, 37.6695, 38.9135, 40.1586, 41.4047, 42.6518, 43.8999,

45.1489, 46.3989, 47.6498, 48.9015, 50.1541, 51.4076, 52.6619, 53.917, 55.1729,

56.4296, 57.6871, 58.9454, 60.2044, 61.4641, 62.7245, 63.9857, 65.2476, 66.5101,

67.7733, 69.0373, 70.3018, 71.567, 72.8329, 74.0994, 75.3665, 76.6342, 77.9025,

79.1714, 80.4409, 81.711, 82.9817, 84.253, 85.5248, 86.7971, 88.07, 89.3435,

90.6175, 91.892, 93.167, 94.4426, 95.7187, 96.9952, 98.2723, 99.5499, 100.828,

102.107, 103.386, 104.665, 105.945, 107.226, 108.506, 109.788, 111.07, 112.352,

113.635, 114.918, 116.202, 117.486, 118.77, 120.055, 121.34, 122.626, 123.912,

125.199, 126.486, 127.773, 129.061, 130.349, 131.638, 132.927, 134.216,

135.506, 136.796, 138.087, 139.378, 140.669, 141.961, 143.253, 144.545,

145.838, 147.131, 148.425, 149.718, 151.013, 152.307, 153.602, 154.897,

156.193, 157.489, 158.785, 160.082, 161.379, 162.676, 163.974, 165.272,

166.57, 167.869, 169.168, 170.467, 171.767, 173.066, 174.367, 175.667, 176.968 }
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In[26]:= Zs[[1]]

Zs[[137]]

Zs[[70]]

Out[26]= 1.13336

Out[27]= 173.066

Out[28]= 86.7971

In[29]:= DiscretePlot [Zs[[ai]], {ai, 1, 140}]

Out[29]= 
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In[30]:= a = 1 / 137;

Plot [{leftEq, rightEq }, {Z, 1, 300}]

a * ZCrit

Out[31]= 
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Out[32]= 1.26326

    3



In[33]:= Z = 1

Plot [{leftEq, rightEq }, {a, 1 / 137, 300 / 137}]

Z * aCrit

Out[33]= 1

Out[34]= 

0.5 1.0 1.5 2.0
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5

Out[35]= 1.13336
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