Publications

Reviews and compilations

  1. Search for new physics with atoms and molecules, S. Safronova, D. Budker, D. DeMille, D. F. Jackson Kimball, A. Derevianko and C. W. Clark, Rev. Mod. Phys. 90, 025008 (2018), arXiv:1710.01833, (local copy).
  2. Colloquium: physics of optical lattice clocks, A. Derevianko and H. Katori, Rev. Mod. Phys. 83, 331–348 (2011)arXiv:1011.4622(local copy).
  3. Accurate evaluation of parameters of optical lattice clocks, A. Derevianko and S. G. Porsev, Ennio Arimondo, Paul R. Berman and Chun C. Lin, editors: Advances in Atomic, Molecular, and Optical Physics, 60, Academic Press, pp. 415-459 (2011).
  4. CP-violating polarizabilities of atoms and molecules, A. Derevianko and M. G. Kozlov In: Ennio Arimondo, Paul R. Berman and Chun C. Lin, editors: Advances in Atomic, Molecular, and Optical Physics, 58, Academic Press, 2010, pp. 77-112arXiv:hep-ex/0504017, (local copy).
  5. Electric dipole polarizabilities at imaginary frequencies for the alkali-metal, alkaline-earth, and inert gas atoms, A. Derevianko, S. G. Porsev and J. F. Babb, Atomic Data and Nuclear Data Tables 96, 323-331  (2010)arXiv:0902.3929(local copy).
  6. Theoretical overview of atomic parity violation. Recent developments and challenges, A. Derevianko and S. G. Porsev, Eur. Phys. J. A 32 (4), pp. 517--523 (2007)arXiv:hep-ph/0608178 (local copy).
  7. Atomic clocks and dark-matter signatures, A. Derevianko, J. Phys. Conf. Series (2016)arXiv:1603.07001, (local copy).
  8. Gamma Factory at CERN - novel research tools made of light, A. Derevianko et al., arXiv:physics/1903.09032
  9. Atomic physics studies at the Gamma Factory at CERN (feature article), Dmitry Budker, J.R. Crespo Lopez-Urrutia, A. Derevianko, V. V. Flambaum, M.W. Krasny, A. Petrenko, S. Pustelny, A. Surzhykov, V. A. Yerokhin, and M. Zolotorev, Annalen der Physik, 2000204 (2020)(local copy).

Dark matter/Searches for new physics beyond the standard model

  1. Search for domain wall dark matter with atomic clocks on board global positioning system satellites, B. M. Roberts, G. Blewitt, C. Dailey, M. Murphy, M. Pospelov, A. Rollings, J. Sherman, W. Williams, and A. Derevianko, Nature Commun. 8, 1195 (2017)arXiv:1704.06844, (local copy).
  2. Search for topological defect dark matter using the global network of optical magnetometers for exotic physics searches (GNOME), S. Afach, B. C. Buchler, D. Budker, C. Dailey, A. Derevianko, V. Dumont, N. L. Figueroa, I. Gerhardt, Z. D. Grujić, H. Guo, C. Hao, P. S. Hamilton, M. Hedges, D. F. J. Kimball, D. Kim, S. Khamis, T. Kornack, V. Lebedev, Z.-T. Lu, H. Masia-Roig, M. Monroy, M. Padniuk, C. A. Palm, S. Y. Park, K. V Paul, A. Penaflor, X. Peng, M. Pospelov, R. Preston, S. Pustelny, T. Scholtes, P. C. Segura, Y. K. Semertzidis, D. Sheng, Y. C. Shin, J. A. Smiga, J. E. Stalnaker, I. Sulai, D. Tandon, T. Wang, A. Weis, A. Wickenbrock, T. Wilson, T. Wu, D. Wurm, W. Xiao, Y. Yang, D. Yu, and J. Zhang, (2021), arXiv:2102.13379, (local copy).
  3. Atomic ionization by scalar dark matter and solar scalars, H. B. Tran Tan,  A. Derevianko,  V. A. Dzuba,  and V. V. Flambaum, arXiv:2105.08296, (local copy).
  4. Hunting for topological dark matter with atomic clocks, A. Derevianko and  M. Pospelov, Nature Phys. 10, 933 (2014)arXiv:1311.1244, (local copy).
  5. Detecting dark matter waves with a network of  precision-measurement tools, A. Derevianko, Phys. Rev. A 97, 042506 (2018)arXiv:1605.09717(local copy).
  6. Precision Metrology Meets Cosmology: Improved Constraints on Ultralight Dark Matter from Atom-Cavity Frequency Comparisons, C. J. Kennedy, E. Oelker, J. M. Robinson, T. Bothwell, D. Kedar, W. R. Milner, G. E. Marti, A. Derevianko, and J. Ye, Phys. Rev. Lett. 125, 201302 (2020), arXiv:2008.08773, (local copy)
  7. Broadband search for ultra-light dark matter with optical cavities, A. Geraci, C. Bradley, D. Gao, J. Weinstein, and A. Derevianko, Phys. Rev. Lett. 123, 031304 (2019)(local copy).
  8. A data archive for storing precision measurements, D. Budker and A. Derevianko, Physics Today 68 (9), 10 (2015)(local copy).
  9. Sensitivity of atom interferometry to ultralight scalar field dark matter, A. Geraci and A. Derevianko, Phys. Rev. Lett. 117, 261301 (2016), arXiv:1605.04048, (local copy).
  10. Atomic clocks and dark-matter signatures, A. Derevianko, J. Phys. Conf. Series (2016)arXiv:1603.07001, (local copy).
  11. Dark forces and atomic electric dipole moments, H. Gharibnejad and A. Derevianko, Phys. Rev. D 91, 03500 (2015),  arXiv:1411.6077, (local copy).
  12. Precision determination of electroweak coupling from atomic parity violation and implications for particle physics, S. G. Porsev, K. Beloy and A. Derevianko, Phys. Rev. Lett. 102,181601 (2009)arXiv:0902.0335(local copy).
  13. Precision determination of weak charge of 133Cs from atomic parity violation, S. G. Porsev, K. Beloy, A. Derevianko, Phys. Rev. D 82, 036008 (2010)arXiv:1006.4193, (local copy).
  14. Reconciliation of the measurement of parity-nonconservation in Cs with the Standard Model, A. Derevianko, Phys. Rev. Lett., 85, 1618 (2000) , arXiv:hep-ph/0005274, (local copy).
  15. Proposed search for T-odd, P-even interactions in spectra of chaotic atoms, M.J. Morrison and A. Derevianko, Phys. Rev. A 86, 022115 (2012)arXiv:1206.3607, (local copy).
  16. CP-violating polarizabilities of atoms and molecules, A. Derevianko and M. G. Kozlov In: Ennio Arimondo, Paul R. Berman and Chun C. Lin, editors: Advances in Atomic, Molecular, and Optical Physics, 58, Academic Press, 2010, pp. 77-112arXiv:hep-ex/0504017, (local copy).
  17. Axio-electric effect, A. Derevianko, V. A. Dzuba, V. V. Flambaum, and  M. Pospelov, Phys. Rev. D 82, 065006 (2010)arXiv:1007.1833, (local copy).
  18. Calculations of the neutron skin and its effect in atomic parity violation (a.k.a. Dispelling the curse of the neutron skin in atomic parity violation),  B. A. Brown, A. Derevianko, V. V. Flambaum, Phys. Rev. C 79, 035501 (2009)arXiv:0804.4315, (local copy).
  19. Proposal for a sensitive search for electric dipole moment of electron with matrix-isolated radicals, M. Kozlov and A. Derevianko, Phys. Rev. Lett. 97, 063001 (2006), arXiv:physics/0602111, (local copy).
  20. Theoretical overview of atomic parity violation. Recent developments and challenges, A. Derevianko and S. G. Porsev, Eur. Phys. J. A 32 (4), pp. 517--523 (2007)arXiv:hep-ph/0608178, (local copy).
  21. Molecular CP-violating magnetic moment, A. Derevianko and M. Kozlov, Phys. Rev. A 72, 040101(R) (2005), arXiv:physics/0507040 (local copy).
  22. Atomic CP-violating polarizability, B. Ravaine, M. Kozlov and A. Derevianko, Phys. Rev. A 72, 012101 (2005), arXiv:hep-ex/0504017(local copy).
  23. Marked influence of the nature of chemical bond on CP-violating signature in molecular ions HBr+ and HI+, B. Ravaine,  S. G. Porsev, and A. Derevianko,  Phys. Rev. Lett 94, 013001 (2005) arXiv:hep-ex/0411057(local copy).
  24. Effects of confinement on the permanent electric-dipole moment of Xe atoms in liquid Xe,  B. Ravaine and A. Derevianko, rapid communication, Phys. Rev. A 69, 050101(R) (2004), arXiv:physics/0404050(local copy).
  25. Correlated many-body treatment of the Breit interaction with application to cesium atomic properties and parity violation, A. Derevianko, Phys. Rev. A 65, 012106 (2002),  (physics/0108033), (local copy).
  26. Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains, A. Derevianko and S. G. Porsev, Phys. Rev. A 65 052115 (2002)arXiv:physics/0112035(local copy).
  27. Role of negative-energy states and Breit interaction in calculations of atomic parity-nonconserving amplitudes, A. Derevianko,  arXiv:physics/0001046.
  28. AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space, Y. A. El-Neaj, C. Alpigiani, S. Amairi-Pyka, H. Araújo, A. Balaž, A. Bassi, L. Bathe-Peters, B. Battelier, A. Belić, E. Bentine, J. Bernabeu, A. Bertoldi, R. Bingham, D. Blas, V. Bolpasi, K. Bongs, S. Bose, P. Bouyer, T. Bowcock, W. Bowden, O. Buchmueller, C. Burrage, X. Calmet, B. Canuel, L.-I. Caramete, A. Carroll, G. Cella, V. Charmandaris, S. Chattopadhyay, X. Chen, M. L. Chiofalo, J. Coleman, J. Cotter, Y. Cui, A. Derevianko, A. De Roeck, G. S. Djordjevic, P. Dornan, M. Doser, I. Drougkakis, J. Dunningham, I. Dutan, S. Easo, G. Elertas, J. Ellis, M. El Sawy, F. Fassi, D. Felea, C.-H. Feng, R. Flack, C. Foot, I. Fuentes, N. Gaaloul, A. Gauguet, R. Geiger, V. Gibson, G. Giudice, J. Goldwin, O. Grachov, P. W. Graham, D. Grasso, M. van der Grinten, M. Gündogan, M. G. Haehnelt, T. Harte, A. Hees, R. Hobson, J. Hogan, B. Holst, M. Holynski, M. Kasevich, B. J. Kavanagh, W. von Klitzing, T. Kovachy, B. Krikler, M. Krutzik, M. Lewicki, Y.-H. Lien, M. Liu, G. G. Luciano, A. Magnon, M. A. Mahmoud, S. Malik, C. McCabe, J. Mitchell, J. Pahl, D. Pal, S. Pandey, D. Papazoglou, M. Paternostro, B. Penning, A. Peters, M. Prevedelli, V. Puthiya-Veettil, J. Quenby, E. Rasel, S. Ravenhall, J. Ringwood, A. Roura, D. Sabulsky, M. Sameed, B. Sauer, S. A. Schäffer, S. Schiller, V. Schkolnik, D. Schlippert, C. Schubert, H. R. Sfar, A. Shayeghi, I. Shipsey, C. Signorini, Y. Singh, M. Soares-Santos, F. Sorrentino, T. Sumner, K. Tassis, S. Tentindo, G. M. Tino, J. N. Tinsley, J. Unwin, T. Valenzuela, G. Vasilakis, V. Vaskonen, C. Vogt, A. Webber-Date, A. Wenzlawski, P. Windpassinger, M. Woltmann, E. Yazgan, M.-S. Zhan, X. Zou, and J. Zupan, EPJ Quantum Technology 7, 6 (2020), arXiv:gr-qc/1908.00802(local copy)
  29. Applying the matched-filter technique to the search for dark matter transients with networks of quantum sensors, G. Panelli, B. M. Roberts, A. Derevianko, EPJ Quantum Technology 7,5 (2020), arXiv:astro-ph:1908.03320
  30. SAGE: A proposal for a Space Atomic Gravity Explorer, G. M. Tino, A. Bassi, G. Bianco, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, X. Chen, M. L. Chiofalo, A. Derevianko, W. Ertmer, N. Gaaloul, P. Gill, P. W. Graham, J. M. Hogan, L. Iess, M. A. Kasevich, H. Katori, C. Klempt, X. Lu, L.-S. Ma, H. Muller, N. R. Newbury, C. Oates, A. Peters, N. Poli, E. Rasel, G. Rosi, A. Roura, C. Salomon, S. Schiller, W. Schleich, D. Schlippert, F. Schreck, C. Schubert, F. Sorrentino, U. Sterr, J. W. Thomsen, G. Vallone, F. Vetrano, P. Villoresi, W. von Klitzing, D. Wilkowski, P. Wolf, J. Ye, N. Yu, and M. S. Zhan, Eur. Phys. J. D 73, 228 (2019), arXiv:astro-ph/1907.03867, (local copy)
  31. Stochastic amplitude fluctuations of bosonic dark matter and revised constraints on linear couplings, A. Derevianko et al., arXiv:astro-ph/1905.13650(local copy).
  32. Atomic parity violation and the standard model, C. Wieman and A. Derevianko, arXiv:physics/1904.00281
  33. Novel approaches to dark-matter detection using space-time separated clocks, E. Savalle, B. M. Roberts, F. Frank, P. Pottie, B. T. McAllister, C. Dailey, A. Derevianko, P. Wolf, arXiv:gr-qc/1902.07192
  34. Searching for Ultralight Dark Matter with Optical Cavities, A. Geraci, C. Bradley, D. Gao, J. Weinstein, A. Derevianko, Phys. Rev. Lett. 123,031304 (2019), arXiv:astro-ph/1808.00540, (local copy)
  35. Search for transient ultralight dark matter signatures with networks of precision measurement devices using a Bayesian statistics method, B. M. Roberts, G. Blewitt, C. Dailey, A. Derevianko, Phys. Rev. D 97, 083009 (2018), arXiv:astro-ph/1803.10264, (local copy)
  36. Precision measurement noise asymmetry and its annual modulation as a dark matter signature, B. M. Roberts and A. Derevianko, Universe 7, 50 (2021), arXiv:physics/1803.00617(local copy).
  37. Detecting dark matter waves with precision measurement tools, A. Derevianko, Phys. Rev. A 97, 042506 (2018), arXiv:physics/1605.09717, (local copy)

Atomic clocks and magic trapping

  1. Colloquium: physics of optical lattice clocks, A. Derevianko and H. Katori, Rev. Mod. Phys. 83, 331–348 (2011)arXiv:1011.4622(local copy)
  2. Accurate evaluation of parameters of optical lattice clocks, A. Derevianko and S. G. Porsev, Ennio Arimondo, Paul R. Berman and Chun C. Lin, editors: Advances in Atomic, Molecular, and Optical Physics, 60, Academic Press, pp. 415-459 (2011), (local copy).
  3. Hunting for topological dark matter with atomic clocks, A. Derevianko and  M. Pospelov, Nature Phys. 10, 933 (2014)arXiv:1311.1244, (local copy). 
  4. Quantum network of neutral atom clocks, P. Kómár, T. Topcu, E. M. Kessler, A. Derevianko, V. Vuletić, J. Ye, M. D. Lukin, Phys. Rev. Lett. 117, 060506 (2016), arXiv:1603.06258, (local copy).
  5. Quantum sensor networks as exotic field telescopes for multi-messenger astronomy, C. Dailey, C. Bradley, D. F. J. Kimball, I. Sulai, S. Pustelny, A. Wickenbrock, and A. Derevianko, Nature Astronomy 5, 150 (2021), arXiv:2002.04352(local copy).
  6. Feasibility of an optical fiber clock, Ilinova, J.F. Babb, A. Derevianko, Phys. Rev. A 96, 033814 (2017)arXiv:1705.05945, (local copy).
  7. Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps, Yang, X. He, R. Guo, P. Xu, K. Wang, C. Sheng, M. Liu, J. Wang, A. Derevianko, M. Zhan, Phys. Rev. Lett. 117, 123201 (2016)arXiv:1606.05580, (local copy).
  8. Hyperfine-induced quadrupole moments of alkali-metal-atom ground states and their implications for atomic clocks, A. Derevianko, Phys. Rev. A 93, 012503 (2016)arxiv:1512.06269, (local copy).
  9. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks, V. I. Yudin, A. V. Taichenachev, A. Derevianko, Phys. Rev. Lett. 113, 233003 (2014), arXiv:1411.0145, (local copy).
  10. Divalent Rydberg atoms in optical lattices: intensity landscape and magic trapping, T. Topcu and A. Derevianko, Phys. Rev. A 89, 023411 (2014)arxiv:1312.173, (local copy).
  11. Intensity landscape and the possibility of magic trapping of alkali Rydberg atoms in infrared optical lattices, T. Topcu and A. Derevianko,  Phys. Rev. A 88, 043407 (2013)arxiv.org:1305.6570, (local copy)
  12. Highly-charged ions as a basis of optical atomic clockwork of exceptional accuracy, A. Derevianko, V. A. Dzuba, V. V. Flambaum, Phys. Rev. Lett. 109, 180801 (2012)arXiv:1208.3528, (local copy).
  13. Ion clock and search for the variation of the fine structure constant using optical transitions in Nd13+ and Sm15+, V.A. Dzuba, A. Derevianko, V.V. Flambaum, Phys. Rev. A 86, 054502 (2012)arXiv:1208.4157, (local copy).
  14. High-precision atomic clocks with highly charged ions: nuclear spin-zero f12-shell ions, V.A. Dzuba, A. Derevianko, V.V. Flambaum, Phys. Rev. A 86, 054501 (2012)arXiv:1209.3857, (local copy).
  15. Rydberg spectroscopy in an optical Lattice: Blackbody thermometry for atomic clocks, V. D. Ovsyanikov, A. Derevianko, K. Gibble, Phys. Rev. Lett. 107, 093003 (2011), arXiv:1107.3169,(local copy).
  16. A Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place, C. J. Campbell, A.G. Radnaev, A. Kuzmich, V.A. Dzuba, V.V. Flambaum, and A. Derevianko, Phys. Rev. Lett. 108, 120802 (2012)arXiv:1110.2490, (local copy)
  17. Possibility of “magic” trapping of three-level system for Rydberg blockade implementation, M. J. Morrison and A. Derevianko, Phys. Rev. A 85, 033414 (2012)arXiv:1110.4593, (local copy)
  18. Possibility of “magic” co-trapping of two atomic species in optical lattices, Muir J. Morrison, V. A. Dzuba, A. Derevianko, Phys. Rev. A 83, 013604 (2011)arXiv:1007.4852(local copy).
  19. Differential Light Shift Cancellation in a Magnetic-Field-Insensitive Transition of  87Rb, R. Chicireanu, K. D. Nelson, S. Olmschenk, N. Lundblad, A. Derevianko, J. V. Porto, Phys. Rev. Lett. 106, 063002 (2011)arXiv:1010.1520(local copy).
  20. “Doubly Magic” conditions in magic-wavelength trapping of ultracold alkali-metal atoms, Andrei Derevianko, Phys. Rev. Lett. 105, 033002 (2010)(local copy).
  21. Theory of magic optical traps for Zeeman-insensitive clock transitions in alkalis, A. Derevianko, Phys. Rev. A 81, 051606(R) (2010)arXiv:0912.3233(local copy).
  22. Entangling the lattice clock: Towards Heisenberg-limited timekeeping, Jonathan D. Weinstein, Kyle Beloy, and Andrei Derevianko, Phys. Rev. A 81, 030302(R) (2010)arXiv:0912.1075(local copy).
  23. Dynamic polarizabilities and related properties of clock states of ytterbium atom, V. A. Dzuba and A. Derevianko, J. Phys. B 43 074011 (2010)arXiv:0908.2278(local copy).
  24. Mapping out atom-wall interaction with atomic clocks, A. Derevianko, B. Obreshkov, and V. A. Dzuba, Phys. Rev. Lett. 103, 133201 (2009)arXiv:0905.4780(local copy).
  25. Micromagic clock: microwave clock based on atoms in an engineered optical lattice, K. Beloy, A. Derevianko, V. A. Dzuba, V. V. Flambaum, Phys. Rev. Lett. 102, 120801 (2009)arXiv:0808.2821(local copy). Media coverage: Why aluminum should replace cesium as the standard of time? by the the physics arXiv blog; The crucible column in Chemistry World magazine October 2008 issue;Time to shrink the atomic clock in New Scientist magazine, March 14, 2009 issue.
  26. AC Stark shift of the Cs microwave atomic clock transitions, P. Rosenbusch, S. Ghezali, V. A. Dzuba, V. V. Flambaum, K. Beloy, A. Derevianko, Phys. Rev. A 79, 013404 (2009)arXiv:0810.4208(local copy).
  27. Magic frequencies for cesium primary frequency standard, V. V. Flambaum, V. A. Dzuba, A. Derevianko, Phys. Rev. Lett. 101, 220801 (2008)arXiv:0809.2825(local copy).
  28. Trapping of neutral mercury atoms and prospects for optical lattice clocks, H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto and H. Katori, Phys. Rev. Lett. 100, 053001 (2008),  arXiv:0711.4638(local copy). This work was highlighted by Discovery Channel: Quicksilver Clock Could 'Revolutionize' Physics .
  29. High-accuracy calculation of black-body radiation shift in 133Cs primary frequency standard, K. Beloy, U. I. Safronova and A. Derevianko, Phys. Rev. Lett. 97, 040801 (2006)arXiv:physics/0606048(local copy)This work was highlighted  by PhysicsWeb/PhysicsWorld: Atomic clocks feel the heat , Nevada News, and Silver and Blue magazine.
  30. Multipolar theory of black-body radiation shift of atomic energy levels and its implications for optical lattice clocks, S. G. Porsev and A. Derevianko, Phys. Rev. A 74, 020502(R) (2006), arXiv:physics/0602082 (local copy).
  31. Hyperfine quenching of the metastable 3P0,2 states in divalent atoms, S. G. Porsev and A. Derevianko, Phys. Rev. A 69, 042506 (2004), arXiv:physics/0312006(local copy).
  32. Possibility of an ultra-precise optical clock using the 6 1S0--6 3P0 transition in 171,173Yb atoms held in an optical lattice, S. G. Porsev, A. Derevianko, and  E. N. Fortson, rapid communication, Phys. Rev. A 69, 021403(R) (2004)(local copy).
  33. Accurate and stable timekeeping, A. Derevianko, Nat Rev Phys 1, 478-479 (2019), (local copy)
  34. Blackbody radiation shift for the 1S0-3P0 optical clock transition in zinc and cadmium atoms, V. A. Dzuba and A. Derevianko, J. Phys. B: At. Mol. Opt. Phys. 52 215005, arXiv:physics/1906.07853, (local copy)

Quantum information processing

  1. Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps, Yang, X. He, R. Guo, P. Xu, K. Wang, C. Sheng, M. Liu, J. Wang, A. Derevianko, M. Zhan, Phys. Rev. Lett. 117, 123201 (2016)arXiv:1606.05580, (local copy).
  2. Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices, Turker Topcu and Andrei Derevianko, J. Phys. B 49, 144004 (2016)arXiv:1602.00046, (local copy).
  3. Effects of molecular resonances on Rydberg blockade, Andrei Derevianko, Péter Kómár, Turker Topcu, Ronen M. Kroeze, Mikhail D. Lukin, Phys. Rev. A 92, 063419 (2015),  arXiv:1508.02480, (local copy).
  4. Rydberg blockade with multivalent atoms: effect of Rydberg series perturbation on van der Waals interactions, T. Topcu and A. Derevianko, arXiv:1505.07152 (2015) 
  5. Intensity landscape and the possibility of magic trapping of alkali Rydberg atoms in infrared optical lattices, T. Topcu and A. Derevianko,  Phys. Rev. A 88, 043407 (2013)arXiv:1305.6570, (local copy).
  6. Entangling the lattice clock: Towards Heisenberg-limited timekeeping, Jonathan D. Weinstein, Kyle Beloy, and Andrei Derevianko, Phys. Rev. A 81, 030302(R) (2010)arXiv:0912.1075(local copy).
  7. Quantum computing with magnetic atoms in optical lattices of reduced periodicity, B. Ravaine, A. Derevianko, and P. R. Berman, Phys. Rev. A 74, 022330 (2006), arXiv:quant-ph/0606162(local copy).
  8. Quantum computing with magnetically-interacting atoms, A. Derevianko and C. Cannon,  Phys. Rev. A 70, 062319 (2004)quant-ph/0406117(local copy). Also at Virtual Journal of Quantum Information  5 (2005).
  9. Possibility of “magic” trapping of three-level system for Rydberg blockade implementation, M. J. Morrison and A. Derevianko, Phys. Rev. A 85, 033414 (2012)arXiv:1110.4593, (local copy).

Ultracold atoms and molecules

  1. Efficient repumping of a Ca magneto-optical trap, Mills, P. Puri, Y. Yu, A. Derevianko, Ch. Schneider, E. R. Hudson, Phys. Rev. A 96, 033402 (2017), arXiv:1701.04948 , (local copy).
  2. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers, D. A. Fedorov, A. Derevianko, S. A. Varganov, J. Chem. Phys. 140, 184315 (2014)arXiv:1401.5532, (local copy).
  3. Stimulated cooling of molecules on multiple rovibrational transitions with coherent pulse trains, E. Ilinova, J. Weinstein, and A. Derevianko, New J. Phys. 17, 055003 (2015), arXiv:1201.1015, (local copy).
  4. See-saw protocol for Doppler cooling of multilevel systems with coherent pulse trains, M. Ahmad, E. Ilinova, and A. Derevianko, arXiv:1206.2393
  5. Doppler cooling of three-level Λ-systems by coherent pulse trains, E. Ilinova, A. Derevianko, Phys. Rev. A 86, 023417 (2012)arXiv:1203.1963, (local copy).
  6. Dynamics of three-level Λ-type system driven by the trains of ultrashort laser pulses, E. Ilinova and A. Derevianko, Phys. Rev. A 86, 013423 (2012)arXiv:1203.0034, (local copy).
  7. Femtosecond pulses and dynamics of molecular photoexcitation: RbCs example, B. E. Londono, A. Derevianko, J. E. Mahecha, A. Crubellier, and E. Luc-Koenig, Phys. Rev. A 85, 033419 (2012)arXiv:1203.0605, (local copy).
  8. Doppler cooling with coherent trains of laser pulses and tunable “velocity comb”, E. Ilinova, M. Ahmad, and A. Derevianko, Phys. Rev. A 84, 033421 (2011)arXiv:1105.0665(local copy).
  9. Application of B-splines in determining the eigenspectrum of diatomic molecules: robust numerical description of halo-state and Feshbach molecules, A. Derevianko, E. Luc-Koenig, F. Masnou-Seeuws, Can. J. Phys. 87, 67 (2009)arXiv:0806.1368(local copy ).
  10. Bose-Einstein condensates of polar molecules: anisotropic interactions = anisotropic mass, A. Derevianko, arXiv:0807.3129.
  11. Simplified contact pseudopotential for anisotropic interactions of polarized particles under harmonic confinement, A. Derevianko, arXiv:0807.3111.
  12. Revised Huang-Yang multipolar pseudopotential, A. Derevianko, Phys. Rev. A 72, 044701 (2005)arXiv:cond-mat/0507209(local copy).
  13. Ultracold collision properties of metastable alkaline-earth atoms, A. Derevianko, S. G. Porsev, S. Kotochigova, E. Tiesinga, P. S. Julienne, Phys. Rev. Lett.,  90, 063002 (2003), arXiv:physics/0210076(local copy).
  14. Anisotropic pseudo-potential for polarized dilute quantum gases, A. Derevianko,  Phys. Rev. A 67, 033607 (2003)arXiv:cond-mat/0212597; Erratum: Phys. Rev. A 72, 039901(E) (2005)(local copy).
  15. Feasibility of cooling and trapping metastable alkaline-earth atoms, A. Derevianko, Phys. Rev. Lett. 87, 023002 (2001)  arXiv:physics/0105030(local copy).
  16. Enhanced cooling of hydrogen by a buffer gas of alkali-metal atoms, A. Derevianko, R. Cote,  A. Dalgarno, G.-H. Jeung,  Phys. Rev. A 64, 011404 (2001)(local copy).

Cold Rydberg physics

  1. Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices, Turker Topcu and Andrei Derevianko, J. Phys. B 49, 144004 (2016), arXiv:1602.00046, (local copy).
  2. Effects of molecular resonances on Rydberg blockade, Andrei Derevianko, Péter Kómár, Turker Topcu, Ronen M. Kroeze, Mikhail D. Lukin, Phys. Rev. A 92 ., 063419 (2015),  arXiv:1508.02480, (local copy).
  3. Rydberg blockade with multivalent atoms: effect of Rydberg series perturbation on van der Waals interactions, T. Topcu and A. Derevianko, arXiv:1505.07152
  4. Divalent Rydberg atoms in optical lattices: intensity landscape and magic trapping, T. Topcu and A. Derevianko, Phys. Rev. A 89, 023411 (2014)arxiv:1312.173, (local copy).
  5. Intensity landscape and the possibility of magic trapping of alkali Rydberg atoms in infrared optical lattices, T. Topcu and A. Derevianko,  Phys. Rev. A 88, 043407 (2013)arxiv:1305.6570, (local copy).
  6. Dynamic polarizability of Rydberg atoms: applicability of the near-free-electron approximation, gauge invariance, and the Dirac sea, T. Topcu and A. Derevianko, Phys. Rev. A 88, 042510 (2013)arxiv:1308.0573, (local copy)
  7. Tune-out wavelengths and landscape-modulated polarizabilities of alkali-metal Rydberg atoms in infrared optical lattices, T. Topcu and A. Derevianko, Phys. Rev. A 88, 053406 (2013) arXiv:1308.6258, (local copy).
  8. Rydberg spectroscopy in an optical Lattice: Blackbody thermometry for atomic clocks, V. D. Ovsyanikov, A. Derevianko, K. Gibble, Phys. Rev. Lett. 107, 093003 (2011), arXiv:1107.3169(local copy).
  9. Possibility of “magic” trapping of three-level system for Rydberg blockade implementation, M. J. Morrison and A. Derevianko, Phys. Rev. A 85, 033414 (2012)arXiv:1110.4593, (local copy).

Long-range (van der Waals) interactions (atom-atom and atom-wall)

  1. Long range interaction coefficients for ytterbium dimers, S.G. Porsev, M.S. Safronova, A. Derevianko, and C. W. Clark, Phys. Rev. A 89, 012711 (2014), arXiv:1307.2656, (local copy).
  2. Relativistic many-body calculations of van der Waals coefficients for Yb-Li and Yb-Rb dimers, S.G. Porsev, M.S. Safronova, A. Derevianko, and C. W. Clark, Phys. Rev. A 89, 022703 (2014)arXiv:1401.6585, (local copy).
  3. Long range interactions of ytterbium in mixed quantum gases,  S.G. Porsev, M.S. Safronova, A. Derevianko, and C. W. Clark, arXiv:1307.2654
  4. Dynamic polarizabilities and related properties of clock states of ytterbium atom, V. A. Dzuba and A. Derevianko, J. Phys. B 43 074011 (2010), arXiv:0908.2278(local copy).
  5. Electric dipole polarizabilities at imaginary frequencies for the alkali-metal, alkaline-earth, and inert gas atoms, A. Derevianko, S. G. Porsev and J. F. Babb, Atomic Data and Nuclear Data Tables 96, 323-331  (2010)arXiv:0902.3929, (local copy).
  6. Mapping out atom-wall interaction with atomic clocks, A. Derevianko, B. Obreshkov, and V. A. Dzuba, Phys. Rev. Lett. 103, 133201 (2009)arXiv:0905.4780(local copy).
  7. Long-range forces between two excited mercury atoms and associative ionization, J. S. Cohen and A. Derevianko, Phys. Rev. A 76, 012706 (2007)arXiv:0706.2689 , (local copy).
  8. High-precision Calculations of Dispersion Coefficients, Static Dipole Polarizabilities, and Atom-wall Interaction Constants for Alkali-metal Atoms, A. Derevianko, W.R. Johnson, M. S. Safronova, and J.F. Babb, Phys. Rev. Lett., 82, 3589 (1999)(local copy).
  9. High-accuracy calculations of dispersion coefficients C6C8 and C10 for alkaline-earth atoms, S. G. Porsev and A. Derevianko,  Journal of Experimental and Theoretical Physics, 102, No. 2, pp. 195–205 (2006) .[original text in Russian Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 129, No. 2, pp. 227–238 (2006)]. (local copy).
  10. Dipole polarizabilities of excited alkali-metal atoms and long range interactions of ground and excited state alkali-metal atoms with helium atoms, Ch. Zhu, A. Dalgarno, S. G. Porsev, and A. Derevianko,  Phys. Rev. A 70, 032722 (2004)(local copy).
  11. Accurate relativistic many-body calculations of van der Waals coefficients C8 and C10 for alkali-metal dimers, S. G. Porsev and A. Derevianko, J. Chem. Phys. 119, 844 (2003), arXiv:physics/0303048(local copy).
  12. High-accuracy relativistic many-body calculations of van der Waals coefficients C6 for alkaline-earth atoms, S. G. Porsev and A. Derevianko, Phys. Rev. A 65, 020701(R) (2002)arXiv:physics/0108047(local copy).
  13. High-precision determination of transition amplitudes of principal transitions in Cs from van der Waals coefficient C6, A. Derevianko and S. G. Porsev, Phys. Rev. A 65, 053403 (2002), arXiv:physics/0108041(local copy).
  14. van der Waals interactions between molecular hydrogen and alkali-metal atoms, C. Zhu, A. Dalgarno and A. Derevianko, Phys. Rev. A 65, 034708 (2002)(local copy).
  15. Interaction Potentials of LiH, NaH, KH, RbH and CsH, N. Geum, G-H. Jeung, A. Derevianko, R. Cote,  A. Dalgarno,  J. Chem. Phys. 115, 5984 (2001)(local copy).
  16. High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers, A. Derevianko, J.F. Babb, A. Dalgarno, Phys. Rev. A 63, 052704 (2001), arXiv:physics/0102030(local copy).
  17. Long-range Interaction of two metastable rare-gas atoms, A. Derevianko and A. Dalgarno, Phys. Rev. A, 62 , 062501 (2000), arXiv:physics/0005082(local copy).

Atomic many-body theory and various atomic-structure

  1. Transition rates and radiative lifetimes of Ca I, Y.Yu and A. Derevianko, Atomic Data and Nuclear Data Tables, (accepted, in press) (2017), arXiv:1702.03473, (local copy).
  2. Probing multiple electric-dipole-forbidden optical transitions in highly charged nickel ions, Shi-Yong Liang, Ting-Xian Zhang, Hua Guan, Qi-Feng Lu, Jun Xiao,Shao-Long Chen, Yao Huang, Yong-Hui Zhang, Cheng-Bin Li, Ya-Ming Zou, Ji-Guang Li, Zong-Chao Yan, Andrei Derevianko, Ming-Sheng Zhan, Ting-Yun Shi, and Ke-Lin Gao, Phys. Rev. A 103, 022804 (2021), arXiv:2101.10538, (local copy).
  3. Hyperfine structure of 173Yb+: toward resolving the 173Yb nuclear octupole moment puzzle, D. Xiao, J.G. Li, W. C. Campbell, Th. Dellaert, P. McMillin, A. Ransford, C. Roman, and A. Derevianko, Phys. Rev. A 102, 022810 (2020)(local copy).
  4. Coupled-cluster calculations of properties of boron atom as a monovalent system, H. Gharibnejad and A. Derevianko, Phys. Rev. A 86, 022505 (2012),arXiv:1206.2932 ,(local copy)
  5. Resolving all-order method convergence problems for atomic physics applications, H. Gharibnejad, E. Eliav, M. S. Safronova, and A. Derevianko, Phys. Rev. A 83, 052502 (2011)arXiv:1104.0245, (local copy).
  6. Hyperfine-mediated static polarizabilities of monovalent atoms and ions, V. A. Dzuba, V. V. Flambaum, K. Beloy, A. Derevianko, Phys. Rev. A 82, 062513 (2010)arXiv:1011.2824(local copy).
  7. Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory, A. Derevianko, J. Phys. B  43, 074001 (2010)arXiv:0910.3613(local copy).
  8. Relativistic many-body calculation of low-energy dielectronic resonances in Be-like carbon,  A. Derevianko, V.A. Dzuba, M.G. KozlovPhys. Rev. A 82, 022720 (2010)arXiv:1006.0994(local copy).
  9. Upper limit on the magnetic dipole contribution to the 5p-8p transition in Rb by use of ultracold atom spectroscopy, R. Pires, M. Ascoli, E. E. Eyler, and P. L. Gould, A. Derevianko, Phys. Rev. A 80, 062502 (2009)arXiv:0908.4444(local copy).
  10. Calculation of Stark-induced absorption on the 6s6p 3P1–6s2 1S0 transition in Hg, K. Beloy, V. A. Dzuba, and A. Derevianko, Phys. Rev. A 79, 042503 (2009)(local copy).
  11. Second-order effects on the hyperfine structure of P states of alkali-metal atoms, K. Beloy and A. Derevianko, Phys. Rev. A 78, 032519 (2008)arXiv:0807.4210(local copy).
  12. Convergence of all-order many-body methods: coupled-cluster study for Li, A. Derevianko, S. G. Porsev, K. Beloy, Phys. Rev. A 78, 010503(R) (2008)arXiv:0804.4697(local copy).
  13. Nuclear magnetic octupole moment and the hyperfine structure of the 5D states of the Ba+ ion, K. Beloy, A. Derevianko, V. A. Dzuba,  G. T. Howell, B. B. Blinov, and E. N. Fortson, Phys. Rev. A 77, 052503 (2008)arXiv:0804.4317(local copy).
  14. Relativistic many-body calculation of energies, lifetimes, hyperfine constants, and polarizabilities in 7Li, W. R. Johnson, U. I. Safronova, A. Derevianko, and M. S. Safronova, Phys. Rev. A 77, 022510 (2008)(local copy).
  15. Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure, K. Beloy, and A. Derevianko, Comp. Phys. Comm. 179 310-319 (2008)(arXiv:0710.3142)(local copy).
  16. Hyperfine structure of the metastable 3P2 state of alkaline-earth atoms as an accurate probe of nuclear magnetic octupole moments, K. Beloy, A. Derevianko, and W. R. Johnson,  Phys. Rev. A 77, 012512 (2008)(arXiv:0709.2655),(local copy).
  17. Optical Quenching of Metastable Magnesium, N. Rehbein, T.E. Mehlstaubler, J. Keupp, K. Moldenhauer, E. M. Rasel, W. Ertmer, V. Michels, A. Douillet, S. G. Porsev, A. Derevianko, C. F. Fischer, G. Tachiev, and V. G. Pal’chikov,Phys. Rev. A 76, 043406 (2007)(local copy).
  18. Relativistic coupled-cluster single-double method applied to alkali-metal atoms, R. Pal, M.S. Safronova, W.R. Johnson, A. Derevianko, S. G. Porsev, Phys. Rev. A 75, 042515 (2007), arXiv:physics/0702090 (local copy).
  19. Inclusion of triple excitations in the relativistic coupled-cluster formalism and calculation of Na properties, S. G. Porsev and A. Derevianko, Phys. Rev. A 73, 012501 (2006) arXiv:physics/0511087(local copy).
  20. Dressing lines and vertices in calculations of matrix elements with the coupled-cluster method and determination of Cs atomic properties, A. Derevianko and S. G. Porsev,  Phys. Rev. A 71, 032509 (2005), arXiv:physics/0410012(local copy).
  21. Complete fourth-order relativistic many-body calculations for atoms, C. Cannon and A. Derevianko, Phys. Rev. A 69, 030502(R) (2004), arXiv:physics/0306099(local copy).
  22. Relaxation effect and radiative corrections in many-electron atoms, A. Derevianko, B. Ravaine, and W.R. Johnson, Phys. Rev. A 69, 054502 (2004), arXiv:physics/0401043(local copy).
  23. Off-diagonal hyperfine interaction between the 6p1/2 and 6p3/2 levels in 133Cs, W. R. Johnson, H. C. Ho, C. E. Tanner, A. Derevianko, Phys. Rev. A 70, 014501 (2004), arXiv:physics/0404102(local copy).
  24. Observation of nuclear magnetic octupole moment of 133Cs, V. Gerginov, A. Derevianko and C. E. Tanner, Phys. Rev. Lett., 91, 072501 (2003)(local copy).
  25. Fourth-order perturbative extension of the single-double excitation coupled-cluster method, A. Derevianko and E. D. Emmons,  Phys. Rev. A 66, 012503 (2002)  arXiv:physics/0204056(local copy).
  26. Fourth-order perturbative extension of the single-double excitation coupled-cluster method, Part II: Angular reduction, A. Derevianko (Dec. 2002), arXiv:physics/0212008(local copy).
  27. Many-body calculations of electric-dipole amplitudes for transitions between low-lying levels of Mg, Ca, and Sr, S. G. Porsev, M. G. Kozlov, Yu. G. Rakhlina, A. Derevianko, Phys. Rev. A 64, 012508 (2001)arXiv:physics/0102070(local copy).
  28. 5p 2P -5d 2D3/2 Transition Matrix Elements in Atomic 87Rb, S.B. Bayram, M. Havey, M. Rosu, A. Sieradzan, A. Derevianko, and W. R. Johnson, rapid communication, Phys. Rev. A 61, 050502(R) (2000)(local copy).
  29. Large Contributions of Negative Energy States to Forbidden Magnetic-Dipole Transition Amplitudes in Alkali-Metal Atoms, I. M. Savukov, A. Derevianko, H. G. Berry, and W.R. Johnson, Phys. Rev. Lett 83, 2914 (1999)(local copy).
  30. Relativistic Many-body Calculations of Energy Levels, Hyperfine Constants,  Electric-Dipole Matrix Elements and Static Polarizabilities for Alkali-metal Atoms, M. S. Safronova, W. R. Johnson, and A. Derevianko,  Phys. Rev. A60, 4476 (1999)arXiv:physics/9906044, (local copy).
  31. Ab initio Calculations of Off-diagonal Hyperfine Interaction in Cesium, A. Derevianko, M.S. Safronova, and W.R. Johnson, rapid communication, Phys. Rev. A  60, R1741 (1999)(local copy).
  32. Relativistic Many-body Calculations of Transition Probabilities for the 2l12l2 [LSJ] - 2l3 3l4[L'S'J'] lines in Be-like Ions, U.I. Safronova,  A. Derevianko, M.S. Safronova, and W.R. Johnson, J. Phys. B  32,  3527 (1999), (local copy).
  33. Higher-order Stark Effects on an Excited Helium Atom, A. Derevianko, W.R. Johnson, V.D. Ovsiannikov, V.G. Pal'chikov, D.R. Plante, and G. von Oppen, Phys. Rev. A 60, 986 (1999)(local copy)
  34. Relativistic Many-body Calculations of Magnetic Dipole Transitions in Be-like Ions,  U.I. Safronova, W.R. Johnson, and A. Derevianko, Phys. Scripta 60, 46 (1999), (local copy).
  35. Relativistic Many-Body Calculations of Transition Probabilities for the 2l1 2l2[LSJ] -2l3 2l[L'S'J'] lines in Be-like Ions, U.I. Safronova, W.R. Johnson, M.S. Safronova, and A. Derevianko, Phys. Scripta 59, 286  (1999), (local copy).
  36. Fine-Structure Effects in Relativistic Calculations of Static Polarizability of Helium Atom, A. Derevianko, W. R. Johnson, V. D. Ovsiannikov, V. G. Pal'chikov, D. R. Plante, G. von Oppen, JETP, 88, 272 (1999), (local copy).
  37. Many-Body Calculations of the Static Atom-Wall Interaction Potential for Alkali-Metal Atoms, A. Derevianko, W.R. Johnson, and S. Fritzsche, Phys. Rev. A, 57, 2629 (1998) ,(local copy)
  38. Negative-energy Contribution to Transition Amplitudes in Heliumlike Ions,  A. Derevianko, I. M. Savukov, W.R. Johnson, and D.R. Plante, Phys. Rev. A 58, 4453  (1998), (local copy)
  39. Relativistic Many-Body Calculations of Energy Levels, Hyperfine Constants, and Transition Rates for Sodiumlike Ions, Z=11-16, M.S. Safronova, A. Derevianko, and W.R. Johnson,  Phys. Rev. A, 58, 1016 (1998),(local copy)
  40. Relativistic Many-body Perturbation Theory, W.R. Johnson, M.S. Safronova, and A. Derevianko, Atomic Processes in Plasmas, AIP Conf. Proc.  443, p.3-18  (Eds. E. Oks and M.S. Pindzola, AIP Press, 1998). 
  41. Two-Photon Decay of 21S0 and 23S1 States of Heliumlike IonsA. Derevianko and W.R. Johnson, Phys. Rev. A 56, 1288 (1997),(local copy).
  42. Transition rates and radiative lifetimes of Ca I, Y. Yu and A. Derevianko, Science Direct Vol. 119, Jan 2018, 263-286, arXiv:physics/1702.03473, (local copy)

Photoionization and axioionization

  1. Axio-electric effect, A. Derevianko, V. A. Dzuba, V. V. Flambaum, and  M. Pospelov, Phys. Rev. D 82, 065006 (2010)arXiv:1007.1833(local copy)
  2. Non-dipole effects in photoionization of rare-gas atoms, A. Derevianko and W.R. Johnson, Proceedings of XXII International Conference on Photonic, Electronic and Atomic Collisions, Edited by J. Burgdorfer, J.S. Cohen,  S. Datz, and C.R. Vane, Rinton Press, Princeton NJ, pp. 226-237 (2001). (local copy)
  3. Electric-octupole and Pure-electric-quadrupole Effects in Soft-x-ray Photoemission, A. Derevianko, O. Hemmers, S. Oblad, P. Glans, H. Wang, S. B. Whitfield, R. Wehlitz, I. A. Sellin, W. R. Johnson, and D. W. Lindle, Phys. Rev. Lett.  84, 2116 ( 2000),(local copy)
  4. Many-body and Model-potential Calculations of Low-energy Photoionization Parameters for Francium, A. Derevianko, W.R. Johnson, and H. R. Sadeghpour, Phys. Rev. A, 61, 022506 (2000)arXiv:physics/9907047 (local copy)
  5. Non-dipole Effects in Photoelectron Angular Distributions for Rare Gas Atoms, A. Derevianko, W.R. Johnson, K. T. Cheng, At. Data Nuc. Data Tables, 73, 153-211 (1999), (local copy).
  6. Non-dipole Effects in Photoionization of the n=2 shell of Neon: Random-Phase Approximation, W. R. Johnson, A. Derevianko, K. T. Cheng, Valery K. Dolmatov, and Steven T. Manson, Phys. Rev. A, 59, 3609 (1999)(local copy)

Plasma physics

  1. Review of the Advanced Generalized Theory for Stark Broadening of Hydrogen Lines in Plasmas with Tables, J. Touma, E.Oks, S. Alexiou, and A. Derevianko, J. Quant. Spectr. Rad. Transfer, 65, 543 (2000), (local copy).
  2. Exact Solution for Impact Broadening of Hydrogen Lines Ly-beta and Ly-gamma, A. Derevianko and E.Oks, Spectral Line Shapes, v.10, AIP Conf. Proc.  467,  p.148  (Ed. R.M. Herman, AIP Press, Woodbury, NY, 1999).
  3. Simple Universal Multi-Particle Model of Ion Dynamical BroadeningA. Derevianko, E. Oks,  J.Quant. Spectr. Rad. Transfer, 58, No 5/6, 553 (1997), (local copy).
  4. Dual-Purpose Diagnostics of Edge Plasmas of Tokamaks Based on a Novel Spectroscopic Effect,  A. Derevianko, E. Oks, Rev. Sci. Instrum., 68, 998 (1997).
  5. A New Multi-particle Model of Ion Broadening Applicable for Both High and Low Densities, A. Derevianko, E. Oks, Spectral Line Shapes, v.9, AIP Conf. Proc.  386, p.15-18 (Eds. M. Zoppi and L. Ulivi, AIP Press, Woodbury, NY, 1997) .
  6. On Exact Solution for the Impact Broadening of Hydrogen Spectral Lines, A. Derevianko, E. Oks, Physics of Strongly Coupled Plasmas,  p.286, p.292 (Eds. W.D. Kraeft, M. Schlanges, World Scientific, New Jersey, 1996)
  7. Improved Theory of Ion Impact Broadening in Magnetized Plasmas and Its Diagnostic Applications,  E. Oks and A. Derevianko, Spectral Line Shapes, AIP Conf.  Proc. 328, p.34-35  (Eds. M. Zoppi and L. Ulivi, AIP Press, Woodbury, NY, 1995) .
  8. Ion Impacts on Moving Emitters: A Convergent Theory of Anisotropic Broadening in High Temperature Plasmas, A. Derevianko and E.Oks,  J. Quant. Spectr. Rad. Transfer, 54, No 1/2, 137 (1995), (local copy)
  9. Generalized Theory of Stark Broadening of Hydrogenlike Spectral Lines in Dense Plasmas, E.Oks, A. Derevianko, and Ya. Ispolatov, J. Quant. Spectr. Rad. Transfer, 54, No 1/2, 307 (1995), (local copy).
  10. Generalized Theory of Ion Impact Broadening in Magnetized Plasmas and Its Applications for Tokamaks, A. Derevianko and E. Oks,  Phys. Rev. Lett., 73, No 15, 2059 (1994),(local copy)
  11. Quasi-0D Model of Acceleration of  Plasma Clot in a Coaxial Gun, A. Derevianko and S. A. Medin, preprint #8-355, Institute for High Temperatures, Russian Academy of Sciences (1992)  (in Russian)

Notes

  • Collection of  AMO formulae (A. Derevianko, snapshot of Dec. 12, 2008), pdf file

Student theses